Por favor, use este identificador para citar o enlazar este ítem: https://dspace.unl.edu.ec/jspui/handle/123456789/31847
Título : Modelo predictivo basado en deep learning para identificar la Mancha Angular (Xanthomonas fragariae) en la hoja de Fresa para el Municipio del cantón Saraguro
Otros títulos : Predictive model based on deep learning to identify the Angular Spot (Xanthomonas fragariae) in the Strawberry leaf for the Municipality of Saraguro canton.
Autor : Suing Albito, Genoveva Jackelinne
González Chillogalli, Diana Gabriela
Palabras clave : .APRENDIZAJE PROFUNDO
CRISP–ML(Q)
MANCHA ANGULAR
YOLOV5
Fecha de publicación : 29-ene-2025
Editorial : Universidad Nacional de Loja
Resumen : El cultivo de fresa es una actividad agrícola común en el cantón de Saraguro. Sin embargo, esta plantación se ha visto afectada significativamente por la bacteria Xanthomonas fragariae, causante de la Mancha Angular, la cual, puede infectar rápidamente gran parte del cultivo, especialmente aquellas al aire libre, provocando baja calidad de producción y significativas perdidas económicas. El propósito de este estudio fue implementar un modelo basado en deep learning para detectar la Mancha Angular en la hoja de fresa. La metodología adoptada se basó en el Proceso Estándar de la Industria Transversal para el Aprendizaje Automático con Garantía de Calidad (CRISP-ML(Q)) adaptando cinco fases: entendimiento de datos, preparación de datos, modelado, evaluación e implementación. En la primera y segunda fase se recolectaron imágenes en diferentes sectores del cantón Saraguro como: La Matara, Tablón, Puente Chico y Cañicapac, donde existen huertos e invernaderos con cultivos de fresa, además, se añadieron imágenes disponibles en Kaggle, conformando un conjunto de 2987 imágenes que incluyen hojas sanas y afectadas por Mancha Angular. Durante la tercera y cuarta fase, se implementaron y compararon los modelos de clasificación y detección de objetos basados en deep learning Yolov5, Yolov7, Yolov8 y Faster R-CNN. Estos fueron entrenados únicamente con datos de la clase "mancha angular", obteniendo precisiones de 93%, 89%, 92% y 82%, respectivamente, destacando Yolov5 como el modelo más preciso. Posteriormente al integrar un conjunto de datos complementarios con imágenes de hojas sanas en el entrenamiento, se logró una mejora leve pero significativa en la precisión de Yolov5, alcanzando un 94%. En la fase final, se desarrolló un prototipo de aplicación móvil utilizando la metodología XP y el framework Flutter para integrar el modelo entrenado. Las pruebas finales, realizadas en colaboración con el Técnico de Desarrollo Agrícola del GAD municipal, alcanzaron una precisión del 96% en un entorno real. Estos resultados demuestran que el modelo propuesto es eficaz para detectar la mancha angular en las hojas de fresa, ofreciendo una valiosa herramienta para los pequeños agricultores del cantón de Saraguro. Palabras clave: Aprendizaje profundo, CRISP–ML(Q), Mancha Angular, Yolov5  
Descripción : Strawberry cultivation is a common agricultural activity in the canton of Saraguro. However, this crop has been significantly affected by the bacterium Xanthomonas fragariae, the causative agent of Angular Leaf Spot. This disease can rapidly infect large quantities of plants, particularly in open-field cultivation, leading to reduced production quality and significant economic losses. The objective of this study was to implement a deep learning-based model to detect Angular Leaf Spot in strawberry leaves. The methodology adopted was based on the Cross-Industry Standard Process for Machine Learning with Quality Assurance (CRISP-ML(Q)), adapting five phases: data understanding, data preparation, modeling, evaluation, and implementation. During the first and second phases, images were collected from various sectors of the canton of Saraguro, including La Matara, Tablón, Puente Chico, and Cañicapac, where strawberry crops are cultivated in both orchards and greenhouses. Additionally, images available on Kaggle were incorporated, resulting in a dataset of 2987 images, including both healthy leaves and those affected by Angular Leaf Spot. In the third and fourth phases, deep learning-based classification and object detection models, namely YOLOv5, YOLOv7, YOLOv8, and Faster R-CNN, were implemented and compared. These models were trained exclusively on data from the "Angular Leaf Spot" class, achieving accuracies of 93%, 89%, 92%, and 82%, respectively, with YOLOv5 emerging as the most accurate model. Subsequently, by integrating a complementary dataset containing images of healthy leaves into the training process, a slight but significant improvement in YOLOv5's accuracy was achieved, reaching 94%. In the final phase, a mobile application prototype was developed using the XP methodology and the Flutter framework to integrate the trained model. Final testing, conducted in collaboration with the Agricultural Development Technician of the municipal GAD, achieved an accuracy of 96% in a real-world environment. These results demonstrate that the proposed model is effective in detecting Angular Leaf Spot in strawberry leaves, providing a valuable tool for small-scale farmers in the canton of Saraguro Keywords: Angular leaf spot, CRISP-ML(Q), Deep learning, Yolov5  
URI : https://dspace.unl.edu.ec/jspui/handle/123456789/31847
Aparece en las colecciones: TRABAJOS DE TITULACION AEIRNNR

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DianaGabriela_GonzalezChillogalli.pdf7,72 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.