

# Universidad nacional de Loja

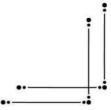
# Facultad de energía, las industrias y los recursos naturales no renovables

Carrera de ingeniería en geología ambiental y ordenamiento territorial

Caracterización morfométrica de un movimiento de masa ubicado en sector la Llorona parroquia Santiago cantón y provincia de Loja.

Trabajo de Titulación, previo a la obtención del título de Ingeniero en Geología Ambiental y Ordenamiento Territorial.


#### **AUTOR:**


Manuel Wilson Saca Tene

# **DIRECTORA:**

Ing. Maritza Ximena Ochoa Tapia Mg.Sc.

Loja – Ecuador 2024





Certificación

Loja, 26 de abril de 2024

Ing. Maritza Ximena Ochoa Tapia Mg.Sc.

DIRECTOR DEL TRABAJO DE TITULACIÓN

**CERTIFICO:** 

Que he revisado y orientado todo el proceso de elaboración del Trabajo de Titulación denominado: Caracterización morfométrica de un movimiento de masa ubicado en sector la Llorona parroquia Santiago cantón y provincia de Loja, previo a la obtención del título de Ingeniero En Geología Ambiental y Ordenamiento Territorial, de autoría del estudiante Manuel Wilson Saca Tene con cédula de identidad N° 1105168338, una vez que el trabajo cumple con todos los requisitos exigidos por la Universidad Nacional de Loja, para el efecto, autorizo la presentación del mismo para su respectiva sustentación y defensa.



Ing. Maritza Ximena Ochoa Tapia Mg.Sc.

DIRECTOR DEL TRABAJO DE TITULACIÓN

#### **Autoría**

Yo, **Manuel Wilson Saca Tene**, declaro ser autor del presente trabajo de titulación y eximo expresamente a la Universidad Nacional de Loja y a sus representantes jurídicos de posibles reclamos o acciones legales, por el contenido del mismo. Adicionalmente acepto y autorizo a la Universidad Nacional de Loja, la publicación de mi trabajo de titulación en el Repositorio Institucional-Biblioteca Virtual.

Firma:

Cédula de identidad: 1105168338

**Fecha:** 26 – 04 - 2024

Correo electrónico: mwsacat@unl.edu.ec

**Teléfono:** +593 980477816

Carta de autorización de proyecto por parte del autor, para la consulta, reproducción parcial o total y publicación del texto completo.

Yo, Manuel Wilson Saca Tene, declaro ser el autor del trabajo de titulación denominado: Caracterización morfométrica de un movimiento de masa ubicado en sector la Llorona parroquia Santiago cantón y provincia de Loja, como requisito para optar al grado de: Ingeniero en Geología Ambiental y Ordenamiento Territorial, autorizo al Sistema Bibliotecario de la Universidad Nacional de Loja para que con fines académicos, muestre al mundo la producción intelectual de la Universidad, a través de la visibilidad de su contenido de la siguiente manera en el Repositorio Institucional.

Los usuarios pueden consultar el contenido de este trabajo en el Repositorio Institucional, en las redes de información del país y del exterior, con las cuales tenga convenio la Universidad.

La Universidad Nacional de Loja, no se responsabiliza por el plagio o copia del trabajo de titulación que realice un tercero.

Para constancia de esta autorización, suscribo, en la ciudad de Loja, a los veintiséis días del mes de abril de dos mil veinticuatro.

Firma:

Autor: Manuel Wilson Saca Tene

Cédula: 1105168338

**Dirección:** Km 43 vía Loja- Cuenca **Correo electrónico:** mwsacat@unl.edu

Teléfono: +593 980477816

#### **DATOS COPLEMENTARIOS:**

Director del Trabajo de Titulación: Ing. Maritza Ximena Ochoa Tapia Mg. Sc.

.

#### Dedicatoria

El presente trabajo de investigación va dedicado de manera especial a mis padres; Ana María Tene y en especial a mi padre Luis Clemente Saca por todo el apoyo tanto moral como económico, además me han sabido alentarme en cada uno de mis sueños y metas, siendo los pilares fundamentales en mi diario vivir; de la misma manera mencionar mis hermanos Valentín, Luz; Sisa, Sara, Patricio, Rosa, Fernando, que han inspirado en mí el sentido de superación.

Manuel Wilson Saca Tene

## Agradecimiento

Primeramente, un infinito agradecimiento a **Dios**, por regalarme la vida y dirigirme por el camino correcto, por brindarme la sabiduría y capacidad de desarrollarme en el ámbito profesional y por ser mi guía y protector.

De la misma manera mi gratitud con la Universidad Nacional de Loja, el Área de la Energía, las Industrias y los Recursos Naturales No Renovables, la carrera de Ingeniería en Geología Ambiental y Ordenamiento Territorial y por ende a los docentes de la carrera, en especial a la ing. Maritza Ximena Ochoa Tapia por la paciencia prestada en el desarrollo del presente trabajo de investigación, y permitirme dar continuidad a mi formación académica, por los conocimientos brindados durante esta grandiosa etapa y contribuir con mi formación profesional.

Manuel Wilson Saca Tene

# Índice de contenido

| P  | ortada                                                  | i    |
|----|---------------------------------------------------------|------|
| Ce | ertificado                                              | ii   |
| Αı | utoría                                                  | iii  |
| Ca | arta de autorización                                    | iv   |
| De | edicatoria                                              | V    |
| Ą  | gradecimientogradecimiento                              | vi   |
| ĺn | ndice de contenido                                      | vii  |
| ĺn | ndice de tablas                                         | ix   |
| ĺn | ndice de figuras                                        | x    |
| ĺn | ndice de anexos                                         | xi   |
| 1. | . Titulo                                                | 1    |
| 2. | . Resumen                                               | 2    |
| ΑŁ | bstract                                                 | 3    |
| 3. | . Introducción                                          | 4    |
| 4. | . Marco teórico                                         | 6    |
|    | 4.1. Topografía                                         | 6    |
|    | 4.1.1. Levantamiento topográfico con Dron               | 6    |
|    | 4.2. Geología                                           | 6    |
|    | 4.2.1. Descripción de afloramiento                      | 6    |
|    | 4.2.2. Geología para ingeniería                         | 7    |
|    | 4.2.3. Geomorfología                                    | 7    |
|    | 4.3. Análisis de amenazas por movimientos en masa       | 7    |
|    | 4.3.1. Efectos de la lluvia en deslizamientos profundos | 7    |
|    | 4.4. Elementos del deslizamiento                        | 7    |
|    | 4.4.1. Dimensiones del deslizamiento                    | 9    |
| 5. | . Metodología                                           | . 11 |
|    | 5.1. Descripción general del área de estudio            | . 11 |
|    | 5.1.1. Ubicación                                        | . 11 |

|                                                           | 5.1.2. Acceso                               | . 12                                                         |
|-----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|
|                                                           | 5.1.3. Geología regional                    | . 12                                                         |
|                                                           | 5.1.4. Clima                                | . 13                                                         |
|                                                           | 5.1.5. Precipitación                        | . 13                                                         |
| 5.                                                        | .2. Materiales                              | . 13                                                         |
| 5.                                                        | .3. Métodos                                 | . 15                                                         |
|                                                           | 5.3.1. Metodología para el primer objetivo  | . 15                                                         |
|                                                           | 5.3.2. Metodología para el segundo objetivo | . 17                                                         |
|                                                           | 5.3.3. Metodología para el tercer objetivo  | . 20                                                         |
|                                                           | a. Ángulo de fricción                       | . 24                                                         |
|                                                           | b. Cohesión no drenada                      | . 24                                                         |
|                                                           | c. Análisis de capacidad de carga           | . 24                                                         |
|                                                           | d. Análisis de asentamiento                 | . 24                                                         |
| 6.                                                        | Resultados                                  | . 26                                                         |
| 6.1.                                                      | Topografía del sector de estudio            | 26                                                           |
| 6.1.                                                      |                                             | . 20                                                         |
|                                                           | 1. Pendiente                                |                                                              |
|                                                           | 1. Pendiente                                | . 26                                                         |
| 6.2.                                                      |                                             | . 26<br>. 27                                                 |
| 6.2.<br>6.3.                                              | Geología Local                              | . 26<br>. 27<br>. 30                                         |
| 6.2.<br>6.3.                                              | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35                                 |
| 6.2.<br>6.3.                                              | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35                                 |
| 6.2.<br>6.3.                                              | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35<br>. 35                         |
| 6.2.<br>6.3.<br>6.                                        | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35<br>. 35<br>. 37                 |
| 6.2.<br>6.3.<br>6.                                        | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35<br>. 35<br>. 37                 |
| 6.2.<br>6.3.<br>6.<br><b>7.</b><br><b>8.</b><br><b>9.</b> | Geología Local                              | . 26<br>. 27<br>. 30<br>. 35<br>. 35<br>. 37<br>. 39<br>. 41 |

# Índice de tablas:

| Tabla 1. Coordenadas del lugar de estudio                                            | 12 |
|--------------------------------------------------------------------------------------|----|
| Tabla 2. Equipos y materiales a emplearse para el desarrollo de la investigación     | 14 |
| Tabla 3. Ficha de descripción de afloramientos                                       | 17 |
| <b>Tabla 4.</b> Anexo A-6.1. (SGC - Colombia, 2015)                                  | 18 |
| Tabla 5. Coordenadas de los SEVS realizados                                          | 19 |
| Tabla 6. Ubicación del sondeo realizado                                              | 21 |
| Tabla 7. Matriz para el etiquetado de la muestra de campo                            | 22 |
| Tabla 8. Ensayos a realizar para determinar las ´propiedades físicas                 | 22 |
| Tabla 9. Cuantificación de pendiente del deslizamiento sector La Llorona parroquia   |    |
| Santiago                                                                             | 27 |
| Tabla 10. Descripción litologica de afloramientos levantados                         | 27 |
| Tabla 11. Medidas generales del movimiento en masa                                   | 30 |
| Tabla 12. Dimensiones del movimiento en masa                                         | 31 |
| Tabla 13.         Valores obtenidos y correlación geológica y columna estratigráfica | 32 |
| Tabla 14. Características de modo y severidad                                        | 34 |
| Tabla 15.         Resultados de laboratorio para las muestras de SPT recuperadas     | 36 |
| Tabla 16. Resultados de parámetros mecánicos obtenidos a partir de SPT.              |    |
| Tabla 10. Resultados de parametros medanicos obtenidos a partir de SF1               | 37 |

# Índice de figuras:

| Figura 1. Elementos de un deslizamiento (Varnes, 1978)                            | 8    |
|-----------------------------------------------------------------------------------|------|
| Figura 2. Dimensiones de los deslizamientos (IAEG, 1900-2000)                     | 9    |
| Figura 3. Ubicación de zona de estudio                                            | . 11 |
| Figura 4. Curvas de nivel cada metro que se obtuvo después del procesamiento      | . 16 |
| Figura 5. Ortofoto de la zona de estudio utilizada para tomar diferentes mediadas |      |
| morfométricas                                                                     | . 19 |
| Figura 6. Equipo utilizado para la realización de las líneas de SEV               | . 20 |
| Figura 7. Esquema de ejecución de ensayo SPT y fotografía en campo de su          |      |
| ejecución                                                                         | . 21 |
| Figura 8. Topografía del área de estudio                                          | . 26 |
| Figura 9. Afloramiento de granodiorita con presencia de xenolitos                 | . 28 |
| Figura 10. Afloramiento de granodiorita alterada                                  | . 29 |
| Figura 11. Afloramiento en la corona del deslizamiento                            | . 29 |
| Figura 12. Afloramiento de arenisca bastante alterado por la meteorización        | . 30 |
| Figura 13. Indicaciones de medidas del deslizamiento                              | . 31 |
| Figura 14. Modelo de capas y curvas de campo                                      | . 32 |
| Figura 15. Modelado del movimiento en masa                                        | . 34 |
| Figura 16. Relación del n60 y la profundidad en cada ensayo                       | . 36 |

# Índice de anexos:

| Anexo 1. Metodología de la topografía                                     | 45 |
|---------------------------------------------------------------------------|----|
| Anexo 2. Metodología utilizada para el sondeo eléctrico vertical          | 48 |
| Anexo 3. Afloramientos de granodiorita                                    | 51 |
| Anexo 4. Ensayos de clasificación ASTM D2487-AASHTO 3282 - 2487           | 55 |
| Anexo 5. Cálculo de N_S.P.T. normalizado                                  | 60 |
| Anexo 6. Registro de mapo (SEV)                                           | 63 |
| Anexo 7. Exploración geofísica                                            | 66 |
| Anexo 8. Mapa topográfico del área de estudio                             | 73 |
| Anexo 9. Mapa de pendientes del área de estudio                           | 74 |
| Anexo 10. Mapa geológico del área de estudio                              | 75 |
| Anexo 11. Certificado de traducción de resumen del proyecto de titulación | 76 |

# 1. Titulo

Caracterización morfométrica de un movimiento en masa ubicado en sector la Llorona parroquia Santiago cantón y provincia de Loja.

#### 2. Resumen

El trabajo de investigación denominado "Caracterización morfométrica de un movimiento en masa ubicado en sector la Llorona parroquia Santiago cantón y provincia de Loja", tiene como principal finalidad tomar las medidas morfométricas para conocer el tipo de movimiento, así como el tipo de material y realizar el cálculo del factor de seguridad. Se plantearon tres objetivos los cuales sirvieron para llevar de manera ordenada la investigación, siendo así el primer objetivo el levantamiento geológico a partir de afloramientos, mediante la metodología de (Echeveste, 2018), Fue indispensable realizar trabajos previos como el levantamiento topográfico, mismo que es utilizado como mapa base, en la descripción de afloramientos y posterior realización del mapa geológico a partir de la información levantada en campo, al corroborar con la hoja geológica Loja, escala 1:100.000 INIGEMM (2017), coincide con la información de la hoja geológica, el área de estudio, ha sido formado en un ambiente ígneo intrusivo. que corresponde al Batolito de San Lucas, misma que en el lugar está constituido por granodiorita, que debido a la meteorización en gran parte se encuentra en forma de arena limosa y arcillosa. El segundo objetivo, las medidas morfométricas del movimiento en masa, se utilizó la metodología de (SGC - Colombia, 2015), que indica las medias importantes a tomar, una vez tomadas y analizadas las medidas, el movimiento en masa, se caracteriza como un deslizamiento rotacional con un volumen de 660579.2m3. El tercer objetivo, cálculo de factor de seguridad, se basa en el método de (Bishop, 1955), mismo factor obtenido es de 1.32 este valor no es aceptable, por el mismo se tendría que realizar trabajos en el talud para mejorar dicho valor.

Palabras Clave: Morfométria de movimiento en masa, factor de seguridad, topografía con drone.

#### **Abstract**

The main purpose of the research titled "Morphometric characterization of a mass movement located in La Llorona sector, Santiago parish, Loja canton and province", is to take morphometric measurements to know the type of movement, as well as the type of material and carry out the calculation of the safety factor. Three objectives were proposed to carry out the investigation in an orderly manner, the first objective is the geological survey from outcrops, using the methodology of (Echeveste, 2018). It was essential to carry out previous work such as the topographic survey, which is used as a base map in the description of outcrops and subsequent creation of the geological map from the information collected in the field, then it was corroborated with the Loja geological sheet, scale 1:100.000 INIGEMM (2017) (of its acronym in Spanish), where it coincides with the information; the study area has been formed in an intrusive igneous environment, which corresponds to the San Lucas Batholith, it is made up of granodiorite. which due to weathering is found in form of silty and clayey sand. The second objective, the morphometric measurements of the mass movement, was used the methodology of (SGC - Colombia, 2015), which indicates the important measures to be taken, once the measurements are taken and analyzed, the mass movement is characterized as a rotational landslide with a volume of 660579.2 m3. The third objective, calculation of the safety factor, is based on the method of (Bishop, 1955), the factor obtained is 1.32, this value is not acceptable, therefore work would have to be carried out on the slope to improve this value.

**Keywords:** Mass movement morphometry, safety factor, drone surveying.

#### 3. Introducción

Los movimientos en masa, provocan cambios en el relieve y el paisaje natural, además incrementan el riesgo de pérdidas tanto de vidas como económicas significativas, el diseño incorrecto de los desmontes en la habilitación de vías sumado al tipo de suelo contribuyen a la inestabilidad de laderas, estos movimientos son muy frecuentes en el Ecuador, sobre todo en la zona de la sierra ecuatoriana, debido a las condiciones geomorfológicas, topográficas y las condiciones climáticas las que contribuyen a que este tipo de movimientos tengan lugar, esto ha conllevado a que se investigues y se apliquen cada vez más soluciones para prevenir o mitigar este tipo de riesgos.

Este estudio describe los principales parámetros morfométricos de un movimiento en masa del sector la Llorona parroquia Santiago cantón y provincia de Loja. En donde se realizaron estudios para conocer el terreno, en los cuales se realizó el levantamiento topográfico, la descripción de afloramientos, y posterior elaboración del mapa geológico, a partir de los afloramientos según la metodología de (Echeveste, 2018).

Los parámetros morfométrica son tomados de acuerdo a la guía metodológica para estudios de amenazas, vulnerabilidad y riesgos de movimientos en masa (SGC - Colombia, 2015), dichas medidas son; las medidas generales, dimensiones del terreno, además de estas medias este este autor hace referencia a la deformación, como el modo y la severidad.

El cálculo del factor de seguridad se lo realizo en el software GEO5, según Bishop, para poder realizar este cálculo se realizó un sondeo de penetración estándar SPT, del cual se obtuvo muestras, las mismas que se realizaron ensayos apegados a las normas internacionales ASTM, ensayos como el contenido de humedad, limite líquido, limite plástico, granulometría y la clasificación SUCS, estos ensayos sirvieron para conocer las condiciones físicas del terreno. Para el espesor de las litologías en el cálculo del factor de seguridad se sirvió de la exploración indirecta como es el sondeo eléctrico vertical mismo que fueron realizados en tres sitios en la corona en el centro y al pie del movimiento,

Para poder llevar una investigación de forma ordenada, se plantearon objetivos los mismos que se describen a continuación.

# 3.1. Objetivos

# 3.1.1. Objetivo general

Establecer los principales parámetros morfométricos de un movimiento en masa del sector la llorona parroquia Santiago cantón y provincia de Loja, que permitan calcular el factor de seguridad.

# 3.1.2. Objetivos específicos

- Realizar el levantamiento geológico a detalle, a partir de la descripción de los afloramientos presentes en la zona de estudio.
- > Determinar los parámetros morfométricos del movimiento en masa.
- Calcular el factor de seguridad del movimiento en masa

#### 4. Marco teórico

#### 4.1. Topografía

La topografía, también conocida como geomancia, es un campo que incluye todos los métodos de medición y recopilación de información física sobre la Tierra y nuestro medio ambiente, procesando esa información y distribuyendo los diversos productos resultantes a diferentes clientes. (Wolf, 2015).

# 4.1.1. Levantamiento topográfico con Dron

Un levantamiento topográfico con drones se basa en la utilización de los rayos de la luz del sol reflejado por los objetos de la superficie de la tierra, lo cual ocurre en la porción visible del espectro electromagnético. Cuyos rayos, llamados también la reflectancia, son capturados en fotografías aéreas por el combo cámara-GPS instalado en un Drone (Collazos, 2018).

El resultado final del levantamiento topográfico con dron es un mapa topográfico donde se representa los diferentes niveles de la superficie de la Tierra así como también los elementos artificiales como vías, poblaciones y también límites y frontera políticas.

# 4.2. Geología

La geología es una rama de las ciencias naturales que se ocupa de la historia, composición, estructura y procesos de la Tierra. Más precisamente, es la roca que forma la superficie de la Tierra hasta una profundidad de 100 o 200 kilómetros. (Iriondo, 2007).

# 4.2.1. Descripción de afloramiento

La descripción y caracterización de rocas incluye el estudio de la matriz de la roca, las discontinuidades y todo el macizo rocoso. Esto incluye las propiedades intrínsecas de la roca así como los factores externos que influyen en la roca y determinan su comportamiento.

A continuación se describe de manera general los aspectos y características macroscópicas para luego describir y caracterizar en detalle las diversas áreas observadas.

Descripción y caracterización de cada región, descripción general, matriz de rocas, discontinuidades, descripción de parámetros de rocas, caracterización general y clasificación geomecánica de rocas (Ferrer, 2007).

# 4.2.2. Geología para ingeniería

Los mapas de geología de ingeniería se pueden crear a partir de unidades de geología de ingeniería (UGI). UGI representa el insumo más importante en términos de homogeneización de las propiedades de ingeniería de los materiales dentro del área de estudio. Utilizando UGI podemos distinguir tres aspectos básicos para la obtención de un modelo que permita realizar análisis de estabilidad.1) Diferenciar el material de afloramiento entre suelo y roca, 2) Definir el espesor del suelo o las propiedades estructurales del macizo rocoso, y 3) Caracterizar los materiales con base en sus propiedades mecánicas. (SGC - Colombia, 2015).

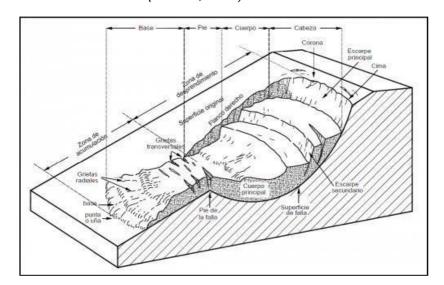
## 4.2.3. Geomorfología

Los elementos geomorfológicos corresponden al nivel más alto de detalle de una unidad geomorfológica definida por microrrelieves asociados con características del relieve, morfometría detallada del relieve y características litológicas basadas en análisis detallados (SGC - Colombia, 2015).

# 4.3. Análisis de amenazas por movimientos en masa

Análisis de amenazas relacionado con la integración de variables que influyen en la ocurrencia actual y futura de procesos de inestabilidad, considerando el agua, los terremotos y los factores humanos como factores desencadenantes, y realizando al menos uno de los siguientes tipos de análisis: sugiere que existe una necesidad, determinista o estocástico (SGC - Colombia, 2015).

### 4.3.1. Efectos de la lluvia en deslizamientos profundos


En la mayoría de los casos, los deslizamientos de tierra profundos son provocados por una presión de poro positiva dentro de la superficie de deslizamiento causada por un aumento en el nivel freático subterráneo. Estos deslizamientos de tierra requieren grandes cantidades de agua para alcanzar las condiciones subterráneas que los desencadenan. Por tal motivo, se considera que el detonante de esta clase de deslizamientos es la cantidad de agua acumulada proveniente de periodos de lluvia previos, en un plazo mucho mayor que en el caso de los superficiales (SGC - Colombia, 2015).

### 4.4. Elementos del deslizamiento

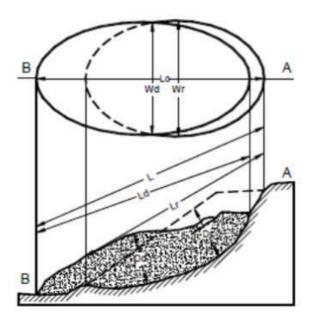
Según (Varnes, 1978), los elementos que conforman un deslizamiento establecido son los siguientes:

Figura 1.

Elementos de un deslizamiento (Varnes, 1978)



- Cabeza. Parte superior de la masa de material que se mueve. La cabeza del deslizamiento no corresponde necesariamente a la cabeza del talud. Arriba de la cabeza está la corona.
- Cima. El punto más alto de la cabeza, en el contacto entre el material perturbado y el escarpe principal.
- > Corona. El material que se encuentra en el sitio, (prácticamente inalterado), adyacente a la parte más alta del escarpe principal, por encima de la cabeza.
- ➤ Escarpe principal. Superficie muy inclinada a lo largo de la periferia posterior del área en movimiento, causado por el desplazamiento del material. La continuación de la superficie del escarpe dentro del material conforma la superficie de la falla.
- ➤ **Escarpe secundario.** Superficie muy inclinada producida por el desplazamiento diferencial dentro de la masa que se mueve. En un deslizamiento pueden formarse varios escarpes secundarios.
- > Superficie de falla. Área por debajo del movimiento y que delimita el volumen del material desplazado. El suelo por debajo de la superficie de la falla no se mueve, mientras que el que se encuentra por encima de ésta, se desplaza. En algunos movimientos no hay superficie de falla.
- Pie de la superficie de falla. La línea de interceptación (algunas veces tapada) entre la parte inferior de la superficie de rotura y la superficie original del terreno.
- ▶ Base. El área cubierta por el material perturbado abajo del pie de la superficie de falla.


- > Punta o uña. El punto de la base que se encuentra a más distancia de la cima.
- Cuerpo principal del deslizamiento. El material desplazado que se encuentra por encima de la superficie de falla. Se pueden presentar varios cuerpos en movimiento.
- > Superficie original del terreno. La superficie que existía antes de que se presentara el movimiento.
- Costado o flanco. Un lado (perfil lateral) del movimiento. Se debe diferenciar el flanco derecho y el izquierdo.

#### 4.4.1. Dimensiones del deslizamiento

Según (IAEG, 1900-2000), para definir las dimensiones de un deslizamiento son:

Figura 2.

Dimensiones de los deslizamientos (IAEG, 1900-2000)



- Ancho de la masa desplazada Wd. : Ancho máximo de la masa desplazada perpendicularmente a la longitud, Ld
- Ancho de la superficie de falla Wr.: Ancho máximo entre los flancos del deslizamiento perpendicularmente a la longitud Lr.
- Longitud de la masa deslizada Ld.: Distancia mínima entre la punta y la cabeza.
- ➤ Longitud de la superficie de falla Lr.: Distancia mínima desde el pie de la superficie de falla y la corona.
- Profundidad de la masa desplazada Dd.: Máxima profundidad de la masa movida perpendicular al plano conformado por Wd y Ld.

- ➤ Profundidad de la superficie de falla Dr.: Máxima profundidad de la superficie de falla con respecto a la superficie original del terreno, medida perpendicularmente al plano conformado por Wr y Lr.
- Longitud total L.: Distancia mínima desde la punta a la corona del deslizamiento.
- ➤ Longitud de la línea central Lc.: Distancia desde la punta o uña hasta la corona del deslizamiento a lo largo de puntos sobre la superficie original equidistantes de los bordes laterales o flancos.

#### 4.5. Factor de seguridad

El factor de seguridad global es un concepto que se origina del método de equilibrio límite en el análisis de estabilidad de taludes. Este factor es un índice que expresa la relación entre: la resistencia al corte media del material del macizo a lo largo de una potencial superficie de ruptura v.s. la resistencia de corte estrictamente necesaria para mantener el terreno en equilibrio (Suárez, 2016).

También es definida como aquella relación numérica entre la resistencia a corte disponible del material del macizo en la superficie de ruptura analizada y los esfuerzos de corte que generaran el movimiento de la masa, esto toma en cuenta los esfuerzos que resisten y contrarrestan a los esfuerzos que causan el movimiento de la doveda (esfuerzos estabilizantes); y los esfuerzos que causan el movimiento de la doveda (esfuerzos desestabilizantes) (p.2).

# 5. Metodología

Este proyecto conlleva la aplicación de diferentes metodologías de la ingeniería geológica, así como de geotécnica y civil, con la finalidad de dar con el objetivo principal que tiene esta investigación que implica detallar la geología, y características morfométricas del movimiento en masa así como la realización de los ensayos de laboratorio de las muestras tomadas, para finalmente obtener el factor de seguridad.

# 5.1. Descripción general del área de estudio

#### 5.1.1. Ubicación

La parroquia Santiago se ubica al sur del Ecuador, es una de las trece parroquias rurales que tiene el cantón Loja, está limitada al norte con la parroquia San Pablo de Tenta (cantón Saraguro) y parte de las parroquias San Lucas y Gualel, al sur con la parroquia de Jimbilla y la parroquia urbana de Loja El Valle, al este con la parroquia San Lucas, y al oeste con las parroquias de Taquil, Chantaco, Chuquiribamba y Gualel.

Figura 3. *Ubicación de zona de estudio* 



El proyecto se encuentra dentro de esta parroquia en el km. 28 vía Loja – Cuenca, en el barrio Manzano sector denominado La Llorona las coordenadas UTM del sitio de estudio se describen en la siguiente tabla.

 Tabla 1.

 Coordenadas del lugar de estudio

| DATUM     | ESTE   | NORTE   | COTA |
|-----------|--------|---------|------|
| UTM WGS84 | 689970 | 9578922 | 2604 |

#### 5.1.2. Acceso

Para acceder a la zona de estudio se lo puede realizar de dos formas:

Por vía aérea desde la cuidad de Quito (Capital del Ecuador), hasta el aeropuerto de la cuidad de Catamayo, del cantón Catamayo se desplaza vía terrestre hasta la cuidad de Loja, y posterior se toma la vía que conduce Loja- Cuenca hasta el km 28 y nos encontramos con la zona de estudio, el trayecto del aeropuerto hasta el sitio es de 1 hora 20 minutos.

Vía terrestre nos dirigimos por la vía Panamericana E35, donde cruzamos todo el valle interandino cruzando las ciudades de Ambato, Riobamba, Azogues, Azuay y Saraguro, para posterior ingresar ya al cantón y provincia de Loja donde primeramente cruzamos por la parroquia San Lucas y luego ya ingresamos a la Parroquia Santiago donde se encuentra el estudio, cabe recalcar que el estudio se lo realiza en esta vía.

#### 5.1.3. Geología regional

Las unidades y formaciones geológicas cercanas al área de estudio según lo misionado por el INIGEMM (2017);

**Unidad Sayo Cruz (M**<sub>Sac</sub>): La unidad consiste de volcanosedimentos retrabajados de grano fino, color blanco-amarillento con líticos de pómez, intercalados con capas de limolitas y lutitas. Además, se incluyen cuerpos riolíticos hipoabisales que morfológicamente resaltan como picos elevados y estructuras columnares. Se infiere una edad miocénica a partir de correlaciones estratigráficas.

**Unidad Cera (P**<sub>zce</sub>): Definida en este proyecto como una secuencia metamórfica de grado medio que varía desde esquistos pelíticos hasta paragneises, correlacionables con la Unidad Agoyán. Litológicamente consiste de esquistos pelíticos de color gris verdoso, con cuarzo y biotita y paragneises con bandas de cuarzo y sericita. También esta unidad se infiere como de edad paleozoica.

**Unidad Tres Lagunas (T**<sub>RL</sub>): Consiste de cuerpos masivos de granitoides variablemente cizallados de grano medio a grueso, con plagioclasa, moscovita, biotita y

fenocristales de cuarzo azul. Al norte de Loja, la unidad se encuentra intruida por el plutón de San Lucas.

**Granitos (G<sup>G</sup>):** Afloran en el sector de Las Juntas y al oeste de la ciudad de Loja, en los sectores de Duraznillo y cerró Villonaco.

**Granodiorita** ( $G^{Gd}$ ): Se expone en la parte centro norte del área y los mejores afloramientos se presentan en la vía Cuenca - Loja entre los poblados San Lucas y Santiago. Este cuerpo granodiorítico muestra variaciones a granito, con textura fanerítica de grano medio a grueso, compuesto por plagioclasa, feldespato alcalino, cuarzo, biotita y menor hornblenda.

#### 5.1.4. Clima

La parroquia Santiago tiene un tipo de clima Ecuatorial Mesotérmico Semi Húmedo, se encuentra a una altura de 2.450 m.s.n.m. Los factores que dan origen al clima de la parroquia son los mismos factores que afectan a la región andina, especialmente la latitud y el relieve, en términos más generales, la zona de convergencia intertropical (PDOT Santiago, 2019).

# 5.1.5. Precipitación

De acuerdo al INHAMI durante los años desde 1990 al 2013. En la parroquia Santiago predominan precipitaciones medias con rangos que van desde los 988,09 mm/año hasta 1040,80 mm/año, ocupando una superficie de 38,58; seguido de precipitaciones bajas con rangos de 935,38 mm/año a 988,09 mm/año, con una superficie de 36,74 Km² y en menor predominio se encuentran precipitaciones altas con rangos de 1040,80 mm/año hasta los 1093, 51 mm/año, con una extensión de 26,60 km².

#### 5.2. Materiales

Los materiales, que se utilizaron para poder desarrollar el proyecto de investigación se dividen en tres, en materiales de uso en campo, uso en oficina y de laboratorio, los cuales se describen en la siguiente tabla.

Tabla 2.Equipos y materiales a emplearse para el desarrollo de la investigación.

| Campo                                  |                           | Gabinete                           |        |  |
|----------------------------------------|---------------------------|------------------------------------|--------|--|
| Equipos                                |                           | Documentos bibliogra               | áficos |  |
| Dron Phantom 4 pro                     |                           | (libros, investigaci               | ones,  |  |
| GPS Garmin                             |                           | artículos, entre otros.)           | ļ      |  |
| Sismógrafo                             |                           | Carta geológica de Loja            | Norte  |  |
| Resistivímetro marca                   | ABEM modelo               | 1: 100000                          | ļ      |  |
| Terrameter SAS 4000                    | )                         | Computadora                        |        |  |
|                                        |                           | Calculadora                        | ļ      |  |
|                                        |                           | Impresora                          | ļ      |  |
|                                        |                           | Memoria externa                    |        |  |
| Herramientas manuales                  | Sustancias                | Software                           |        |  |
| Machete, barreta,                      | <ul> <li>Ácido</li> </ul> | Google Earth                       |        |  |
| lampa, barreno                         | clorhídrico               | <ul> <li>ArcGis 10.3.1.</li> </ul> | ļ      |  |
|                                        | N/20                      | AutoCAD 2015                       | ļ      |  |
| Materiale                              | S                         | Microsoft Excel                    |        |  |
| Brújula BRUNTON                        |                           | Microsoft Word                     | ļ      |  |
| <ul> <li>Martillo geológico</li> </ul> |                           | Microsoft Power Point              | ļ      |  |
| Cinta métrica (50 m)                   |                           | • GEO5                             | ļ      |  |
| <ul> <li>Flexómetro</li> </ul>         |                           | AutoCAD                            |        |  |
| Cámara fotográfica                     |                           | RecMic                             |        |  |
| • Fichas para la                       | descripción de            |                                    |        |  |
| afloramientos.                         |                           |                                    |        |  |
| Bolsas herméticas                      |                           |                                    |        |  |
| Etiquetas para muestr                  | as                        |                                    | ļ      |  |
| Libreta de campo                       |                           |                                    |        |  |
| Marcadores permanentes                 | y lápiz.                  |                                    |        |  |
|                                        | Laboratorio               | )                                  |        |  |
| Equi                                   | ipos                      | Materias                           |        |  |
| Balanza analí                          | tica                      | Capsulas de porcelana y metal      |        |  |
| Estufa                                 |                           | Tamices                            |        |  |
| Desecador                              |                           | • Morteros                         |        |  |
| Cuchara de C                           | asa Grande                | Fundas plásticas                   |        |  |
| Mufla                                  |                           | Cuchareta, espátula                |        |  |

#### 5.3. Métodos

Para poder dar cumplimiento con los diferentes objetivos planteados se tuvo que recurrir a diferentes métodos como el de campo, científico, descriptivo y experimental, los cuales me ayudaron a alcanzar lo propuesto en la investigación.

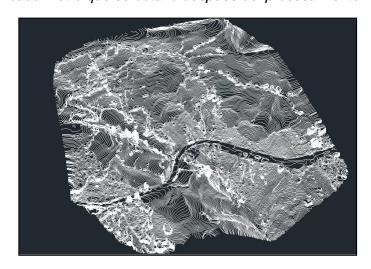
#### 5.3.1. Metodología para el primer objetivo

Para cumplir con el primer objetivo que es: "Realizar el levantamiento geológico a detalle, a partir de la descripción de los afloramientos presentes en la zona de estudio". Se realizaron diferentes actividades las cuales se detallan a continuación.

Primeramente se realizó un recorrido por toda la zona donde se realizó el levantamiento topográfico, visualizando hasta qué punto se desea levantar la información, una vez realizado el recorrido se procedió al levantamiento topográfico el cual se detalla paso a paso:

#### ✓ Levantamiento fotogramétrico con dron Phantom 4 pro

En este proceso se utilizaron técnicas para obtener medidas fiables de objetos físicos en tierra a través de la toma de ortofotografías empleando un vehículo aéreo no tripulado – VANT (Dron) que cuenta con una cámara de alta resolución (4K), controlado mediante un radio control por un piloto en tierra, quien programa misiones automatizadas en referencia con el área que necesita ser levantada. Por tanto, la ejecución de esta actividad comprende una fase de campo y una de oficina.


En la fase de campo se realizaron las diferentes calibraciones como: el ángulo de la cámara, la cual debe estar en los 90°, un área de traslape de 80%, así mismo la captación de la señal de almenas 12 satélites, en el caso de este levantamiento, se realizaron 9 líneas de vuelo con un total de 174 imágenes.

En la fase de oficina se realizaron el procesamiento de las ortofotografias con la ayuda del software Pix4D maper, que consiste en tres pasos, el primer paso es el procesamiento inicial en donde se establecieron las coincidencias en cada una de las fotografías. El paso 2 a seguir es la Nube de puntos y malla, en la opción nube de puntos se indica que se genere una clasificación para estos puntos. Las opciones adicionales no se modificaron. El paso 3 o MDS, Ortomosaico e Indices; se exportaron los archivos resultantes del procesamiento, como son Modelo Digital del Terreno (MDT), ortomosaico y curvas de nivel.

Finalmente las curvas de nivel cada metro, se exportaron en formato .shp y .dxf, con estos datos se procedió a levantar todos los elementos estructurales y se obtuvo un mapa topográfico del lugar de investigación.

Figura 4.

Curvas de nivel cada metro que se obtuvo después del procesamiento



Nota: la metodología paso a paso del levantamiento la encontramos en el anexo N° 1.

# ✓ Levantamiento Geológico

### > Fase de campo

La orto foto y la topografía, sirvieron como base para realizar el levantamiento geológico, así como la revisión de los estudios realizados en sectores cercanos y mapa geológico de la parroquia Santiago generado a partir de la hoja geológica Loja, escala 1:100.000 INIGEMM (2017), posterior en el campo se realizó la identificación de la litología, para el cual se realizó la descripción de afloramientos cuyos datos obtenidos fueron escritos en la ficha técnica (Tabla N°3), y con la ayuda del GPS Garmin Etrex 32x, fueron ubicados dentro del mapa base.

#### > Fase de oficina

Con estos datos obtenidos en las fichas de los afloramientos se, procedió a la elaboración del mapa geológico en el Software ArcGis 10.3.1., de acuerdo a la metodología de (Echeveste, 2018), donde indica las herramientas necesarias para la confección del mapa geológico como son; los sistemas de referencias geográficas, la topografía y su confección como mapa base, las observaciones geológicas se vuelcan en el mapa base topográfico o la orto foto geo referenciada, el GPS, sirvió en la correcta ubicación de las observaciones sobre el mapa base, el contacto de las litologías es inferido se basa a las curvas de nivel. El resultado final es un mapa geológico a detalle donde se conoce las formaciones geológicas con el tipo de roca presente en la zona de investigación.

 Tabla 3.

 Ficha de descripción de afloramientos

| Caracterización         | Descripción |               |    |         |
|-------------------------|-------------|---------------|----|---------|
| Fotografía:             | Superficie: |               |    |         |
|                         |             |               |    | Сара 1: |
| Ubicación<br>referencia |             |               |    | Capa 2: |
| Coordenadas             | X:          | Y:            | Z: |         |
| Clima                   |             | Vegetación    |    |         |
| Grado de                |             | Tipo de       |    |         |
| meteorización           |             | afloramiento  |    |         |
| Dimensión               | Ancho:      | Altura total: | l  | Capa 3: |
| Datos<br>estructurales  | Rumbo:      | Buzamiento:   |    |         |
| Formación               |             | 1             |    |         |
| geológica               |             |               |    |         |

# 5.3.2. Metodología para el segundo objetivo

Para dar cumplimiento al segundo objetivo que es: "Determinar los parámetros morfométricos del movimiento en masa". Se realizaron diferentes actividades tanto de campo y gabinete.

Para poder realizar este objetivo partimos de la recopilación de antecedentes, siempre es interesante analizar que causas ha podio motivar la iniciación, en un momento dado, de un problema de inestabilidad. En algunos casos esto se debe a la excavaciones realizadas en el pie, zanjas de abastecimiento desmonte de viales, a veces los antecedentes son más sutiles como una determinada poda o eliminación de la vegetación, sacudidas sísmicas de importancia media, voladuras de cantera, etc. (Gijon, 1988).

La metodología que se utilizo fue a la Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa (SGC - Colombia, 2015).

Los parámetros que se tomaron de la masa desplazada se describen en la Tabla Nº 4

#### Tabla 4.

Anexo A-6.1. (SGC - Colombia, 2015).

# MORFOMETRIA PARA INVENTARIO DE MOVIMIENTOS EN MASA

#### **GENERALES**

Diferencia de altura corona a punta (m)

Longitud horizontal corona a punta (m)

Fahrboschung (grados)

Pendiente de ladera en Posfalla (grados)

Pendiente de ladera en Prefalla (grados)

Dirección del movimiento (grados)

Azimut del talud (grados)

#### DIMENSIONES DEL TERRENO

Volumen (m<sup>3</sup>)

Área total afectada (m²)

Perímetro:

Ancho de la masa desplazada,

Wd (m)

Ancho de la superficie de

ruptura, Wr (m)

Longitud de la masa

desplazada, Ld (m)

Longitud de superficie de

ruptura, Lr (m)

Espesor de la masa

desplazada, Dd (m)

Profundidad de superficie de

ruptura, Dr (M) Longitud total, L (m)

DEFORMACIÓN

MODO SEVERIDAD

Ondulación Leve Media Escalonamiento Severa

Figura 5.

Ortofoto de la zona de estudio utilizada para tomar diferentes mediadas morfométricas



Para conocer la profundidad de la superficie de ruptura se realizó sondeos eléctricos verticales (SEV), estos sondeos se realizaron en tres puntos con un AB variable de hasta 20 m, localizadas conforme se indica en la siguiente tabla.

Tabla 5.

Coordenadas de los SEVS realizados

| SEV  | Coordenadas WGS84 17S |           | Cota   | Longitud AB/2 |
|------|-----------------------|-----------|--------|---------------|
| 021  | Este (m)              | Norte (m) | ms.n.m | (m)           |
| Nº01 | 689841                | 9578926   | 2685   | 88.10         |
| Nº02 | 689894                | 9578916   | 2659   | 100           |
| Nº03 | 689960                | 9578877.3 | 2629   | 78.10         |

. En el estudio de resistividad eléctrica, se utilizó el resistivímetro marca ABEM modelo Terrameter SAS 4000, utiliza un voltaje máximo de salida a los electrodos de corriente igual a 400 voltios (con selección de tres rangos automáticos de medida  $\pm$  250 mV,  $\pm$  10V y  $\pm$  400 V).

La amplitud de corriente es fijada automáticamente por el instrumento, o por control manual para facilitar la adaptación a las condiciones reales de los estudios, con un rango de amperaje entre 1 mA a 1000 mA, suficiente para una separación de electrodos de corriente AB de hasta 1000.0 m. bajo buenas condiciones de medida.

El equipo SAS 4000 responde a las medidas creadas por el transmisor de corriente en el momento de su acción, mientras rechaza las existentes por campos DC (SP), VOLTAJE Y RUIDO; la relación V/I que consta en las hojas de cálculo de cada sondeo eléctrico vertical (SEV), se calcula automáticamente y visualiza en la pantalla digitalmente en kiloohmios, ohmios o miliohmios. La metodología utilizada para realizar los SEVS, se encuentran en el anexo N° 5.

Figura 6.

Equipo utilizado para la realización de las líneas de SEV



Para obtener el valor del volumen se ayudó del software minero RecMic, para el mismo se utilizó los valores obtenidos de los SEVS, y el modelado del movimiento en masa, que fue obtenido a partir de la topografía.

# 5.3.3. Metodología para el tercer objetivo

Para dar cumplimiento al tercer objetivo que es: "Calcular el factor de seguridad del movimiento en masa.": se desarrollaron diferentes actividades que se detallan a continuación.

Para obtener el factor de seguridad según Bishop, se utilizaron datos obtenido en objetivos anteriores, datos como la topografía (para el perfil del terreno), los resultados de los SEVS, para las potencias de las litologías, y para conocer las características mecánicas del subsuelo se realizó un estudio de exploración directa como es el SPT, del mismo que se extrajeron muestras y se realizaron diferentes ensayos de laboratorio, apegados a las normas internacionales ASTM.

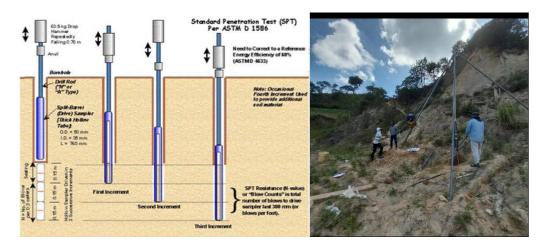
El ensayo de penetración estándar (SPT), está separado en tres fases, la de campo, laboratorio y gabinete.

# **5.3.3.1. Fase de campo**

En este estudio se realizó un (01) sondeo con ejecución de ensayo SPT a cada metro hasta una profundidad de 5.30 m, con obtención de muestras alteradas; y ubicado de acuerdo a la tabla siguiente:

Tabla 6.

Ubicación del sondeo realizado


| Descripción | Profundidad | Coordenadas WGS84 17S |           | Cota   |
|-------------|-------------|-----------------------|-----------|--------|
|             |             | Este (m)              | Norte (m) | ms.n.m |
| Sondeo 1    | 5.30 m      | 689958.7              | 9578879.8 | 2629   |

# Ensayo de Penetración Estándar (SPT)

Este ensayo consiste en hincar un muestreador de tubo partido con el fin de obtener el índice de resistencia a la penetración que ofrecen los suelos al ser ensayados por un penetró metro, el cual es hincado a percusión mediante un martinete de 63.5 Kg bajo la caída libre de 75 cm a través de un tubo guiador. La ejecución del ensayo viene acompañada de la recuperación de una muestra alterada representativa para ser ensayadas en laboratorio. Los ensayos de penetración estándar S.P.T son ejecutados de acuerdo a la norma ASTM-D1586.

Figura 7.

Esquema de ejecución de ensayo SPT y fotografía en campo de su ejecución



Para estos trabajos in-situ se emplearon los siguientes equipos y herramientas:

- Pesa de seguridad de 140 ±2 lb (63.5 Kg)
- Cabeza de hinca y tubo guía.

- Tubos de 1.0 m
- Tubo partido
- Otros (metro, hojas de campo, marcadores, fundas, etiquetas, etc.)

Las características que posee el saca muestras (tubo partido) son:

- Tubo bipartido con punta de acero
- Diámetro externo 2 pulg.
- Diámetro interno 1 3/8 pulg.
- Longitud de cuchara 27 pulg.

Tabla 7.

Matriz para el etiquetado de la muestra de campo

UNIVERSIDAD NACIONAL DE LOJA FACULTAD DE ENERGIA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES CARRERA DE INGENIERIA EN GEOLOGIA AMBIENTAL Y ORDENAMIENTO TERRITORIAL DESARROLLO DE PROYECTO DE TITULACION **ESPECIAL** MUESTRA DE MOVIMIENTO EN MASA SECTOR LA LLORONA Numero de muestra: Punto de muestreo: X= Y= Z= Tratamiento: Análisis físico Operador: Fecha: Observaciones: Hora:

#### 5.3.3.2. Fase de laboratorio

Sobre las muestras alteradas obtenidas mediante el ensayo SPT y sobre las muestras inalteradas; apegados a las normas internacionales ASTM, se realizaron los siguientes ensayos:

 Tabla 8.

 Ensayos a realizar para determinar las 'propiedades físicas

| Propiedades  | <u>Parámetros</u>   | Ensayos <sub>Metodología</sub> /Norma |
|--------------|---------------------|---------------------------------------|
|              | Contenido de Húmeda | Norma ASTM _ D2216                    |
|              | Limite liquido      | Norma: ASTM_D-4318                    |
|              | Limite plástico     | Norma: ASTM_D-4318                    |
| <b>-</b> (-: | Granulometría       | Norma: ASTM_D-422                     |
| Física       | Clasificación SUCS  | Norma: ASTM_D-2487                    |

#### 5.3.3.4. Fase de gabinete

El índice de penetración conjuntamente con el tipo de suelo obtenido en laboratorio, permite a través de ábacos y fórmulas empíricas, determinar la capacidad admisible de los suelos ensayados a la profundidad deseada.

Para la determinación de los parámetros del suelo, con base en el N del SPT, se ha calculado el valor corregido, ajustado al 60% de energía. La corrección se realiza con base a la expresión recomendada por Bowles (1996), la cual considera algunos factores para su corrección.

$$N1 = C_N * N \tag{1}$$

N1= Índice de penetración estándar corregido por penetración de confinamiento

N= Número de penetración medido

C<sub>N</sub>= Factor de corrección por presión efectiva de sobrecarga (Peck y otros, 1974)

$$C_N = 0.77 \log[20/(\sigma'_0/\rho_a)]$$
 (2)

σ´<sub>o</sub>= Tensión efectiva de confinamiento

ρ<sub>a</sub>= Presión atmosférica

$$N_{60} = \frac{N \mathbf{n}_{\underline{H}} \mathbf{n}_{\underline{B}} \mathbf{n}_{\underline{S}} \mathbf{n}_{\underline{R}}}{60} \tag{3}$$

N<sub>60</sub>= Corrección de SPT por condiciones de campo

η<sub>H</sub>= Eficiencia de martillo (%)

η<sub>B</sub>= Corrección por diámetro de perforación

η<sub>H</sub>= corrección del muestreador

η<sub>H</sub>= corrección por longitud de barra perforadora

Para el caso de arenas finas y limos bajo nivel freático, cumpliendo la condición de N>15

$$N_{corr.} = 15 + \frac{N - 15}{2} \tag{4}$$

Cuando se haya corregido el SPT tanto para los efectos de sobrecarga como para los efectos de afinidad del martillo, la resultante se indicará como N1<sub>60</sub>.

$$N1_{60} = C_N \ N_{60} \tag{5}$$

En los sondeos donde se ha obtenido la condición de rechazo se ha asumido un valor de 100 golpes para los cálculos correspondientes.

Con los valores obtenidos del N60, se han aplicado correlaciones con la finalidad de establecer parámetros mecánicos del suelo tales como cohesión y fricción.

# a. Ángulo de fricción

El ángulo de fricción de suelos granulares ha sido estimado en base al número de golpes N<sub>SPT</sub>, de acuerdo a la relación propuesta por Osaki (1959).

$$\emptyset = \sqrt{20 * N60} + 15 \tag{6}$$

#### b. Cohesión no drenada

En base al N<sub>SPT</sub>, se puede estimar la cohesión no drenada (c<sub>U</sub>), de acuerdo a la relación propuesta por Stroud 1974, basada en pruebas triaxiales no drenadas conducida en arcillas sensitivas.

$$c_u = KN_{60} \tag{7}$$

K= constante promedio (4.4 N/m<sup>2</sup>)

#### c. Análisis de capacidad de carga

La capacidad de carga por corte se ha estimado en base a la ecuación general de capacidad de carga propuesta por Meyerhof (1956, 1965). Para suelos granulares (arenas secas y húmedas) Meyerhof propuso la siguiente expresión suponiendo que la presión de apoyo permitida causa un asentamiento total de 25 mm.

$$q_a = N/10$$
 (para cualquier B) (8)

En el caso de arcillas la capacidad portante está basada en el valor de cohesión no drenada en función de la siguiente expresión.

$$q_{y} = 5.14 * C (para cualquier B)$$
 (9)

qa= Capacidad admisible

qu= Capacidad última

C= Cohesión

B= ancho de la base

#### d. Análisis de asentamiento

Los asentamientos son de tipo elástico y se los ha evaluado con procedimientos teóricos y empíricos. El teórico implica la determinación de ciertos parámetros del terreno de apoyo como es el módulo de elasticidad del material, la relación de Poisson, y, otros parámetros que tienen relación con la forma y rigidez del cimiento. Para la evaluación de los asentamientos en cada apoyo se aplica la expresión indicada a continuación, que proporciona el asentamiento Se.

$$S_e = \frac{[q_o(1 - u^2)\sqrt{A'}]}{144 E \beta \sum_{S = z}}$$
 (10)

Dónde:

 $q_0$ = Presión vertical aplicada

A'= área efectiva de la zapata

 $E_s$ = módulo de elasticidad del suelo en Ksi (Tabla C10.4.6.3-1 Constantes elásticas de las variaciones de suelo Bowles 1988; modificada por U.S. Departamento of he Navy, 1982; Bowles 1988)

 $\beta_z$ =Factor de forma y rigidez (Tabla 10.6.2.2.3b-2 AASHTO LRFD 2017; Kulhaway 1983)

u= Relación de poisson (Tabla C10.4.6.3-1 Constantes elásticas de las variaciones de suelo Bowles 1988; modificada por U.S. Departamento of he Navy, 1982; Bowles 1988)

Dentro de las consideraciones realizadas para el cálculo, se toma que el asentamiento máximo permisible sea de 25 mm y para un ancho de zapata variable.

#### 5.3.3.2. Determinación del factor de seguridad

Para determinar el factor de seguridad se utilizó el software GEO5, el mismo que está compuesto por tres módulos, el primer módulo, la introducción del perfil del terreno, el segundo, la asignación de la litología, el tercero, el análisis de la estabilidad.

## Perfil del talud

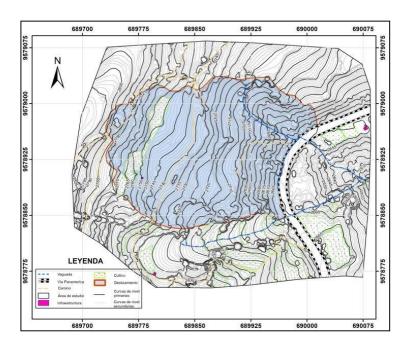
Se utilizó de la topografía que se realizó anteriormente, se trazó algunas propuestas sobre la planimetría del deslizamiento por donde puede producirse el mayor deslizamiento, se decidió por una de ellas y se procedió a dibujar el perfil del deslizamiento.

# Determinación de estratigrafía

Se utilizó los espesores de cada una de capas de suelo obtenida de las líneas SEVS y para las condiciones mecánicas del suelo los resultados obtenidos del SPT realizado.

#### Análisis de estabilidad

Este programa cuenta con los métodos de Bishop, Fellenius / Petterson, Spencer, Jambu y Morgenstern – Price, de análisis para taludes; de los cuales se utilizó el de Bishop circular. Se ingresaron en el programa la geometría del talud, así mismo las propiedades de los suelos, el ángulo de fricción interna, cohesión del suelo y peso unitario para cada una de las capas y el software realiza el cálculo de forma automatizada.


#### 6. Resultados

# 6.1. Topografía del sector de estudio

La topografía de la zona de estudio se caracteriza por presentar desniveles que van de los 2557 m.s.n.m. (cota más baja) hasta los 2821 m.s.n.m. (cota más alta) con pendientes bastante pronunciadas, el lugar cuenta con áreas utilizadas para sembríos de maíz, y legumbres el resto del área es ocupada para pastizales de animales, la principal característica del lugar es la existencia de la planta llamada Aliso. Es atravesada por una vía de primer orden (Panamericana E35), donde se conectan caminos que se utilizan para llegar a los sembríos y viviendas, además se caracterizan dos nacientes de agua las cuales se unen formando una v, pendiente abajo, el deslizamiento se encuentra en medio de estas dos vertientes de agua. El mapa está representado por con segundarias cada metro y las curvas principales cada 5 metro en base a la escala de trabajo 1:1500. El área total levantada e 11.82 hectáreas, el área del movimiento en maza es de 4.24 hectáreas (ver Anexo 8).

Figura 8.

Topografía del área de estudio



## 6.1.1. Pendiente

La pendiente es un aspecto muy importante de tomar en cuenta a la hora de realizar un estudio de movimiento de masa por el cual al conjunto con otros factores condicionan a que se produzca este evento, es este estudio se puede apreciar que nos encontramos con una pendiente, la cual se realizó una clasificación de acuerdo a Demek (1985) ver (Anexo 9), la cual se describe a continuación los resultados obtenidos:

 Tabla 9.

 Cuantificación de pendiente del deslizamiento sector La Llorona parroquia Santiago

| Clase | Simbología | Rango (°) | Término de la pendiente      | Área (m²) | Porcentaje<br>(%) |
|-------|------------|-----------|------------------------------|-----------|-------------------|
| 1     |            | 1 - 5     | Plana o suavemente inclinada | 3958.93   | 3.33              |
| 2     |            | 5 – 15    | Inclinada                    | 15464.50  | 13.02             |
| 3     |            | 15 – 35   | Muy inclinada                | 60894.21  | 51.28             |
| 4     |            | 35 - 55   | Abrupta                      | 31716.39  | 26.71             |
| 5     |            | 55 – 90   | Muy abrupta                  | 6705.53   | 5.65              |

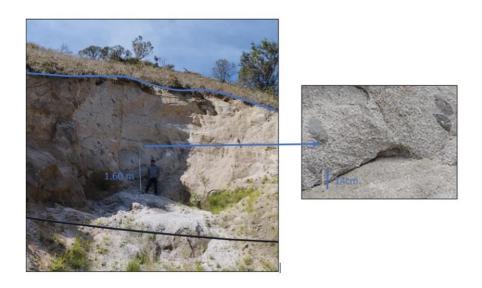
# 6.2. Geología Local

## **Batolito de San Lucas**

De acuerdo a la carta geológica Loja a escala 1: 100000 IGEMM (2017), se establece que el are de estudio, esta litológicamente conformado en su totalidad por granodiorita, del Batolito de San Lucas.

La geología local se efectuó mediante el método de mapeo de los afloramientos y se describieron un total de 18 afloramientos, mismos que fueron estudiados en los diferentes lugares del área de estudio, en la siguiente tabla se puede apreciar los puntos del afloramiento levantados:

**Tabla 10.**Descripción litológica de afloramientos levantados


| - NIO |        | Ubicació | ón   | 1941                                   |
|-------|--------|----------|------|----------------------------------------|
| N° -  | Χ      | Υ        | Z    | ——— Litología                          |
| AF1   | 69031  | 9578978  | 2655 | Granodiorita de coloración gris oscuro |
| AF2   | 689957 | 9578868  | 2665 | Arena limosa                           |
| AF3   | 689741 | 9578984  | 2790 | Arena limo-arcillosa                   |
| AF4   | 689818 | 9579032  | 2763 | Arena limosa                           |
| AF5   | 690010 | 9578970  | 2622 | Arena limosa                           |
| AF6   | 689946 | 9579000  | 2654 | Arena limosa                           |
| AF7   | 689967 | 9578925  | 2631 | Arena limo-arcillosa                   |
| AF8   | 689875 | 9578859  | 2663 | Arena limo-arcillosa                   |
| AF9   | 690005 | 9578782  | 2621 | Granodiorita de coloración gris oscuro |
| AF10  | 689919 | 9578761  | 2654 | Arena limo-arcillosa                   |
| AF11  | 689751 | 9578800  | 2711 | Arena limosa                           |
| AF12  | 689688 | 9578912  | 2748 | Arena limosa                           |
| AF13  | 689786 | 9578951  | 2715 | Arena arcillosa                        |
| AF14  | 689747 | 9578883  | 2721 | Arena arcillosa                        |

| AF15 | 689855 | 9578913 | 2678 | Arena limosa         |
|------|--------|---------|------|----------------------|
| AF16 | 689887 | 9579021 | 2683 | Arena limosa         |
| AF17 | 689970 | 9579053 | 2661 | Arena limo-arcillosa |
| AF18 | 689912 | 9578934 | 2654 | Arena limosa         |

### **Granodiorita:**

Afloramiento 1. Se puede apreciar el afloramiento de este cuerpo en el talud de la vía Loja – Cuenca, con presencias de xenolitos de un diámetro de 14 cm en promedio, al costado del deslizamiento, tiene una altura de 10 metros y un ancho de 12 metros, en la parte superior encontramos una pequeña capa de arcilla producto de la misma erosión de la misma roca, la cual existe poca vegetación, en este afloramiento se puede observar que la roca tiene una textura faneritica, en la misma presenta cristales entre 1 a 2.6 milímetros.

**Figura 9.**Afloramiento de granodiorita con presencia de xenolitos



Afloramiento 2, este afloramiento lo encontramos de forma antrópica con una altura de 13 metros y un ancho de 12 metros, en la cual encontramos granodiorita bien alterada, en forma arena limosa, en la parte superior encontramos con vegetación alisos, y una pequeña capa de material orgánico de 10 cm, como producto de la misma meteorización de la roca.

**Figura 10.**Afloramiento de granodiorita alterada



Afloramiento 3, corona del deslizamiento, con una altura de 9.5 metros y un ancho de 20 metros, granodiorita bien alterada, en forma arena limo-arcillosa con presencia de vegetación en la misma, arbustos como laurel, chilca y hierva, esto debido que la granodiorita se encuentra bien alterada la cual al descomponerse sus minerales sirven como nutrientes para la vegetación y se desarrollan de manera más rápida.

Figura 11.

Afloramiento en la corona del deslizamiento



**Afloramiento 4,** afloramiento de tipo antrópico, afloramiento a causa de un camino que utilizan los de la zona para llegar a diferentes lugares, altura de 7 metros y

con un ancho de 12 metros presencia una pequeña capa de arcilla 20 cm. A causa de la meteorización de la granodiorita, que se encuentra en forma de arena limosa.

**Figura 12.**Afloramiento de arenisca bastante alterado por la meteorización



En área de estudio, ha sido formado en un ambiente ígneo intrusivo, que corresponde al extenso cuerpo plutónico del Batolito de San Lucas, está constituido por una litología en particular, la granodiorita más sin embargo debido a la meteorización en gran parte del área se encuentra en forma de arena limosa y arcillosa (ver Anexo 10).

## 6.3. Paramentos morfométricos del movimiento en masa

Luego de realizar las diferentes mediciones de los parámetros morfométricos del movimiento en masa se obtuvo los siguientes resultados:

Parámetros generales del movimiento en masa tenemos lo siguiente:

**Tabla 11.**Medidas generales del movimiento en masa

| Parámetro                                   | Valor      |
|---------------------------------------------|------------|
| Diferencia de altura corona y punta         | 130 metros |
| Longitud horizontal corona a punta          | 343 metros |
| Fahrboschung Grados                         | 15.1°      |
| Pendiente de la ladera en Posfalla (grados) | 29.9°      |
| Pendiente de ladera en Prefalla (grados)    | 45°        |

Las dimensiones del terreno se describen a continuación:

Figura 13.

Indicaciones de medidas del deslizamiento



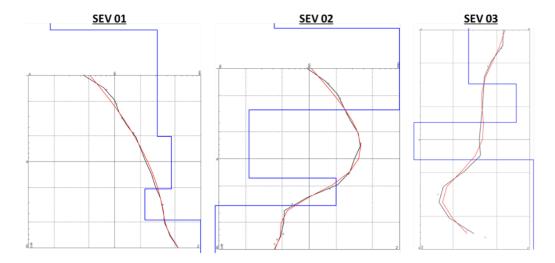
Tabla 12.

Dimensiones del movimiento en masa

| Parámetro                                   | Valor                    |  |
|---------------------------------------------|--------------------------|--|
| Ancho de la masa desplazada, Wd (m)         | 192.64 metros            |  |
| Ancho de la superficie de ruptura, Wr (m)   | 218.96 metros            |  |
| Longitud de la masa desplazada, Ld (m)      | 233.63 metros            |  |
| Longitud de superficie de ruptura, Lr (m)   | 223.88 metros            |  |
| Espesor de la masa desplazada, Dd (m)       | 32.8 metros              |  |
| Profundidad de la superficie de ruptura (m) | 47.5 metros              |  |
| Longitud total, L (m)                       | 240.13 metros            |  |
| Perímetro (m)                               | 1017.51 metros           |  |
| Área total afectada (m2)                    | 52036.9 metros cuadrados |  |
| Volumen (m³)                                | 660579.2 metros cúbicos  |  |

Para obtener la profundidad de la superficie de ruptura, se tuvo que recurrir a métodos indirectos como es el SEV, la cual se realizó en tres lugares cerca de la corona, en el centro y en el pie del talud.

# • Exploración geofísica – SEV


A partir de la inversión de los datos, los cambios de los valores de resistividad se comparan con valores típicos de la literatura, y se correlacionan con la información geológica del sitio. De acuerdo a la geología regional el sector se ubica dentro del batolito de San Lucas, caracterizado por rocas tipo granodioritas.

Posteriormente se elabora un perfil en el que se establecen las diferentes unidades geoeléctricas.

A continuación en la (Figura 14) se muestra la curva obtenida en campo y su modelo; así mismo en la (Tabla 13) los resultados que incluyen la resistividad real, la profundidad y la asociación litológica de cada capa identificada.

Figura 14.

Modelo de capas y curvas de campo



De acuerdo a esta grafica se puede observar el comportamiento de la diferentes materiales al paso de energía, mediante la resistencia al paso de corriente, se pudo clasificar la correspondencia a litologías probables, obteniendo así litologías como arenas limo-arcillosas, arenas limos (Saprolito), y la granodiorita del Batolito de San Lucas.

Tabla 13.

Valores obtenidos y correlación geológica y columna estratigráfica.

| Nº<br>SEV | Capa<br>Nº | De<br>(m) | A<br>(m) | Resistividad<br>Ωm | Correspondencia<br>Litológica Probable | Columna<br>estratigrafi<br>ca |
|-----------|------------|-----------|----------|--------------------|----------------------------------------|-------------------------------|
|           | 1          | 0.00      | 0.30     | 17.9               | Cobertura de suelo superficial         |                               |

|   | 2 | 0.30           | 5.10 | 313   | Posibles arenas limo-<br>arcillosas con<br>humedad             | <del>2</del> ] /                              |
|---|---|----------------|------|-------|----------------------------------------------------------------|-----------------------------------------------|
| 1 | 3 | 5.10           | 20.7 | 455   | Posibles arenas<br>limosas (Saprolito)                         |                                               |
|   | 4 | 20.7           | 47.5 | 224   | Posibles arenas limo-<br>arcillosas con<br>humedad (Saprolito) | 4: 4:<br>+: +: +                              |
|   | 5 | A parti<br>47. |      | 15760 | Granodiorita del<br>Batolito de San<br>Lucas                   | +:: +:: +<br>+:: +: +<br>+: +: +<br>+: 5 +: + |
|   | 1 | 0.00           | 0.36 | 411   | Cobertura de suelo superficial (limos arenosos)                |                                               |
|   | 2 | 0.36           | 2.87 | 12516 | Posibles arenas limosas con clastos                            |                                               |
|   | 3 | 2.87           | 16.3 | 216   | Posibles arenas limo-<br>arcillosas con<br>humedad (Saprolito) | + + +                                         |
| 2 | 4 | 16.3           | 32.8 | 1981  | Granodiorita del<br>Batolito de San Lucas                      |                                               |
|   | 5 | A part<br>32.8 |      | 19.3  | Horizonte con<br>saturación<br>(Granodiorita)                  |                                               |
|   | 1 | 0.00           | 0.84 | 66    | Arenas limosas con<br>humedad (suelo<br>superficial)           | 2                                             |
|   | 2 | 0.84           | 3.1  | 27.6  | Arenas limo-<br>arcillosas con<br>humedad                      | <u> </u>                                      |
|   | 3 | 3.10           | 6.97 | 75.3  | Arenas limosas con<br>humedad                                  | + + + + + + + + + + + + + + + + + + + +       |
| 3 | 4 | 6.97           | 15.3 | 3.34  | Arenas limo-<br>arcillosas saturadas<br>(Saprolito)            | + + +<br>+ + 5<br>+ + +                       |
|   | 5 | A part<br>15.3 |      | 1098  | Granodiorita del<br>Batolito de San<br>Lucas                   | + + +                                         |

De acuerdo a las curvas de resistividad, es comprensible el comportamiento de cada una sea distinta al ubicarse dentro de un movimiento en masa activo. Para los dos ensayos ubicados en la corona del movimiento existen resistividades en el rango de 200  $\Omega$ m a 450  $\Omega$ m, asociados a materiales producto de la meteorización del intrusivo, los cuales forman materiales areno-limosos de granulometría media. Los altos resistivos se asocian a materiales más competentes. Para el ensayo tres, los valores de resistividad disminuyen, pero no se asocia un cambio de materiales; si no que está relacionado a una mayor presencia de contenido de agua producto de ubicarse en el pie del

movimiento. Complementariamente en esta zona se ubica el material que se ha ido desplazando, por lo que se tratan de materiales más sueltos.

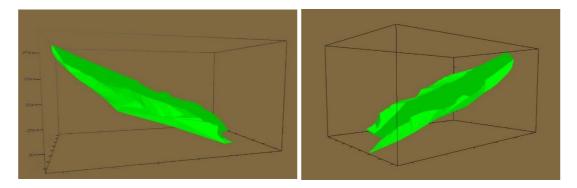
## Volumen del movimiento.

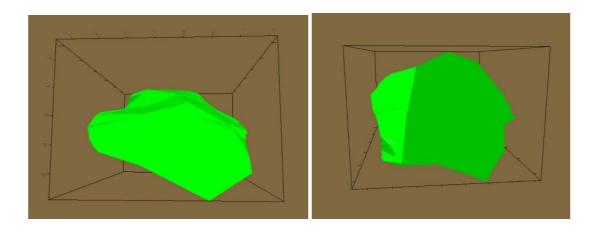
Una vez obtenido los resultados de la profundidad y demás medidas se pudo realizar el modelado del cuerpo del deslizamiento, para el cual se utilizó el software minero RecMin, mediante este modelado se pudo obtener el volumen del deslizamiento.

Otros parámetros tomados en consideración en las medidas morfométricas de un movimiento en masa son el Modo y la severidad:

Tabla 14.

Características de modo y severidad


| Modo      | Escalonado |
|-----------|------------|
| Severidad | Media      |


## Caracterización de movimiento en masa

El movimiento en masa es un deslizamiento rotacional debido a la caracterización de la forma y profundidad de la falla, esta conclusión se llega después de haber tomado todas las medias, y verificar la forma como se dio este tipo de deslizamiento, además de realizar el modelamiento 3D, donde se aprecia cómo se encuentra este deslizamiento.

Figura 15.

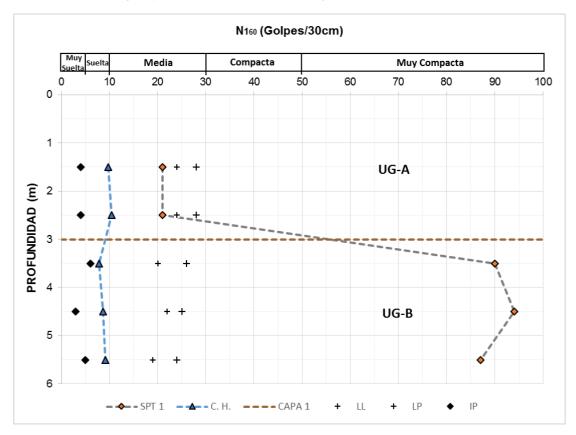
Modelado del movimiento en masa





# 6.4. Determinación del factor de seguridad

Fue necesario contar con toda la información el cual, permita analizar las diferentes posibilidades que se puede presentar, por lo cual se recurrió a la información que se obtuvo en las líneas SEVS, la topografía y los resultados de laboratorio de las muestras de la exploración directa SPT.


# > Exploración geotécnica

Mediante la exploración directa (SPT), y aplicando las correlaciones correspondientes se han obtenido parámetros físicos y mecánicos.

El valor de campo de la resistencia a la penetración (N<sub>SPT</sub>), ha sido corregido obteniendo el valor N1<sub>60</sub>. En la Ilustración 16 se observa su representación, al tratarse de suelos granulares, el rango de variación de compacidad relativa está en el orden de media a muy compacta. Los valores corregidos se observan en la Tabla 15.

Figura 16.

Relación del n60 y la profundidad en cada ensayo



De las muestras alteradas recuperadas se realizaron los ensayos de contenido de humedad, granulometrías y clasificación SUCS. En la siguiente tabla se resumen los resultados.

Tabla 15.

Resultados de laboratorio para las muestras de SPT recuperadas

|          | Prof. | C.H       | L      | L      | IP | GRAN      | GRANULOMETRÍA |           |           |                                       |
|----------|-------|-----------|--------|--------|----|-----------|---------------|-----------|-----------|---------------------------------------|
|          | m     | %.        | L<br>% | P<br>% | %  | G         | Α             | F         | SUCS      | Descripción                           |
|          | 1.00  | 9.68      | 28     | 24     | 4  | 2.82      | 78.8<br>3     | 18.3<br>5 | SM        | Annua Burana                          |
| _        | 2.00  | 10.3<br>9 | 28     | 24     | 4  | 2.60      | 73.9<br>5     | 23.4<br>5 | SM        | Arena limosa                          |
| Sondeo 1 | 3.00  | 7.78      | 26     | 20     | 6  | 16.6<br>1 | 66.9<br>0     | 16.4<br>9 | SC-<br>SM | Arena limosa y arcillosa<br>con grava |
| So       | 4.00  | 8.59      | 25     | 22     | 3  | 1.55      | 81.2<br>5     | 17.2<br>0 | SM        | Arena limosa                          |
|          | 5.00  | 9.68      | 28     | 24     | 4  | 2.82      | 78.8<br>3     | 18.3<br>5 | SC-<br>SM | Arena limosa y arcillosa              |

Según la clasificación SUCS a través de los ensayos de laboratorio, los materiales se tratan de suelos granulares de medios a finos tipo arenas limosas con baja presencia de arcillas y gravas. El contenido de agua promedio está en el orden de 9.11%.

Para el cálculo de capacidad de carga (Estado límite de falla) se ha considerado un factor de seguridad FS=3, de acuerdo lo estipulado en la NEC-SE-GC Tabla 6. Factores de seguridad indirectos mínimos.

La obtención de los parámetros de resistencia al corte no drenado Su (C) se obtiene para los suelos en el rango de arcillas (CL, CH1), para los demás suelos se los toma como de comportamiento fricionante.

Los resultados de los parámetros mecánicos obtenidos de acuerdo a las fórmulas citadas en la sección metodología se detallan en la siguiente tabla:

Tabla 16.Resultados de parámetros mecánicos obtenidos a partir de SPT.

| Pozo   | Prof. | SUCS  | N <sub>spt</sub> | N <sub>60</sub> | N1 <sub>60</sub> | q <sub>ult</sub><br>neta | q <sub>adm</sub><br>neta | Ø (Osaki<br>1959) |
|--------|-------|-------|------------------|-----------------|------------------|--------------------------|--------------------------|-------------------|
|        | m     |       | golpes           | golpes          | golpes           | Kg/cm²                   | Kg/cm²                   | 0                 |
|        | 1.00  | SM    | 21               | 16              | 21               | 4.73                     | 1.58                     | 33                |
|        | 2.00  | SM    | 21               | 16              | 21               | 4.73                     | 1.58                     | 33                |
| Š<br>1 | 3.00  | SC-SM | R                | 75              | 90               | 22.50                    | 7.50                     | 54                |
| _      | 4.00  | SM    | R                | 85              | 94               | 25.50                    | 8.50                     | 56                |
|        | 5.00  | SC-SM | R                | 85              | 87               | 25.50                    | 8.50                     | 56                |

## 6.4.1. Factor de seguridad del talud

Los resultados obtenidos de acuerdo al método de Bishop, se detallan en la siguiente tabla:

Tabla 17.

Valores obtenidos en el factor de seguridad

| Características             | Valores          |
|-----------------------------|------------------|
| Suma de fuerzas activas Fa  | 72977,16 KN/m    |
| Suma de fuerzas pasivas Fp  | 96091,56 KN/m    |
| Momento de deslizamiento Ma | 14494495,39 KN/m |

| Momento de estabilización Mp | 19085405,78 KN/m |
|------------------------------|------------------|
| Factor de seguridad          | 1,32 < 1,5       |
| Estabilidad del talud        | No aceptable     |

Como se puede evidenciar el valor del factor de seguridad no es aceptable, se recomienda realizar algunos trabajos para que no existan inconvenientes en el futuro y así garantizar la estabilidad del mismo.

#### 7. Discusión

Los movimientos en masa son procesos de transporte de material definidos como procesos de movilización lenta o rápida de determinado volumen de suelo, roca o ambos, en diversas proporciones (Hauser, 1993), las causas geológicas representan las características fundamentales en el estudio de las laderas, comprenden litología, composición mineralógica y la textura del material así como su estructura (Borgetti y Soldati, 2005), la estabilidad de taludes requiere de especial atención puesto que son múltiples los deslizamientos de masa de suelo han sido los causantes de pérdidas de numerosas visas humanas (Mejía, 2014). De aquí la importancia por el cual se realizó este estudio el cual servirá de base para posibles trabajos en la zona, los cuales garantizaran su estabilidad ante los diferentes agentes externos en el tiempo.

De acuerdo a la geología del estudio está dentro de la Formación del Batolito de San Lucas, según el (INIGEM 2017), al ser un batolito, la mineralización que posee en toda su extensión es variada, mostrándose en zonas como granodiorita y en otras zonas como un granito. En el área de estudio luego de realizar el análisis petrográfico de las muestras de mano y la ubicación según el diagrama de (Streckeisen, 1976), plotea en el campo de una granodiorita, misma que se encuentra aflorando en el talud de la vía. En el deslizamiento nos encontramos con arenas limosas y arcillosas debido a la meteorización de la misma granodiorita.

La morfométria del movimiento en masa, son dimensiones y características que ayudan a entender el tipo de movimiento, según estas dimensiones y características se trata de un, deslizamiento rotacional esto debido a la profundidad que se encuentra la falla 47.5 metros y la forma de la misma que es cóncava, Según (GEMMA, 2007), manifiesta que los deslizamiento rotacionales se mueve a lo largo de una superficie de falla curva y cóncava. La deformación interna de la masa desplazada es usualmente muy poca. Debido a que el mecanismo rotacional es auto-estabilizante, y éste ocurre en rocas poco competentes, la tasa de movimiento es con frecuencia baja, excepto en presencia de materiales altamente frágiles como las arcillas sensitivas. (Massad, 2003), señala que los deslizamientos de tierra son movimientos de masas directamente a influenciados por la acción de la gravedad, que presentan una tendencia a estabilizarse naturalmente después de la ocurrencia de una falla.

Las causas que provocaron el movimiento en masa; son los altos niveles de precipitación y las acciones antropogenicas indebidas como, la infiltración de agua proveniente del rompimiento de la tubería que atraviesa la parte superior de la corona, esto asociada al tipo de litología, topografía; permitió la infiltración y saturación de agua,

y posterior deslizamiento. (Lopez, 2023), señala en su tesis de grado denominado "Levantamiento geomorfológico a escala 1:10.000 con la utilización de la herramienta SIG de la parroquia rural Santiago, cantón y provincia de Loja", que la mayor parte de deslizamientos en la parroquia Santiago, se producen dentro en este intrusivo debido a los altos grados de meteorización que presenta.

El factor de seguridad de acuerdo al análisis en el software GeO5, de estabilidad de talud por el método (Bishop, 1955), no es aceptable de acuerdo a los rangos establecidos, donde se puede constar la relación existente entre la clasificación del tipo de suelo, misma que está comprendida de suelos granulares de medios a finos tipo arenas limosas con baja presencia de arcillas y gravas. El contenido de agua promedio está en el orden de 9.11%,

No obstante que, es difícil encontrar dos terrenos o taludes con las mismas características estructurales, litológicas y geométricas que brinden resultados similares al aplicarse un análisis por el método Bishop.

#### 8. Conclusiones

- ➤ La geología, se encuentra dentro del, Batolito de San Lucas, su composición varía desde granodioritas a granitos, en el área de estudio luego de realizar los respectivos análisis, se encuentra conformada por granodiorita, misma que se encuentra aflorando en el talud de la vía a los dos costados del deslizamiento. En el deslizamiento encontramos con arenas limosas y arcillosas debido a la meteorización de la misma granodiorita.
- La topografía que presenta el lugar, ha servido para una mejor comprensión de la geología, debido a que presenta superficies irregulares con alturas de los 2557 m.s.n.m. (cota más baja), hasta los 2821 m.s.n.m., (cota más alta), existiendo afloramientos con grandes potencias que ayudan comprender de mejor manera la geología.
- ➤ La morfométria del movimiento en masa, enseña las dimensiones y características del movimiento, mismas que llevan a la conclusión que encontramos ante un deslizamiento rotacional, la dirección el movimiento es 79°NW, con una profundidad de ruptura de 47.5 metros, la pendiente pos falla es de 29.9° un volumen de 660579.2m3, y un área total afectada de 52039.9m2.
- ➤ El factor de seguridad del talud es de 1.32, considerado como no es aceptable, esto debido a los materiales que presenta de la zona de estudio, al tratan de suelos granulares de medios a finos tipo de arena limosa con baja presencia de arcilla y grava, con una compacidad relativa media y un contenido de humedad del 9.11%.

#### 9. Recomendaciones

- Es importante realizar la colocación de mojones de cemento en diferentes puntos donde, a través de la estación total se tome los puntos de control, los cuales ayudaran a llevar un monitoreo del deslizamiento, ante posibles activaciones en el tiempo.
- ➤ Este proyecto debe complementar con más ensayos como; las líneas sísmicas, además un mallado de 50 por 50 metros donde se realicen ensayos de SPT, que permitan conocer de forma directa las diferentes capas del terreno y sus propiedades.
- Con la finalidad de garantizar la estabilidad del talud es recomendable realizar una limpieza y posible colocación de un drenaje en la parte superior de la vía, que ayude a evacuar toda el agua presente, además canalizar las aguas lluvias mediante zanjas de hormigón vertido a los extremos del deslizamiento.

## 10. Bibliografía

- Breña, C. H. (2019). Estabilidad de taludes de la carretera longitudinal de la sierra; tramo Cochabamba-Cutervo-Chiple, Cajamarca-Perú. Universidad Nacional Mayor de San Marcos.
- Collazos, J. (2018). Evaluación de modelos digitales de elevación obtenidos mediante topografía convencional y topografía con drones para el cálculo de volúmenes.
- Echeveste, H. J. (2018). Manual de levantamiento geológico. Series: Libros de Cátedra.
- Estrada y Soberanis, V. J. (2014). Estabilidad de taludes en suelos . UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO.
- Ferrer, M. y. (2007). Manual De Campa Para La Descripción y Caracterizacion de Macizos Rocosos En Afloramientos. Eds: (Vol. 4). Igme.
- GEMMA. (2007). MOVIMIENTOS EN MASA EN LA REGIÓN ANDINA: UNA GUIA

  PARA LA EVALUACION DE AMENAZAS . PUBLICACIÓN GEOLÓGICA

  MULTINACIONAL.
- Gijon, F. (1988). Deslizamientos, desprendimientos, flujos y avalanchas.
- Hauser, A. (1993). Remociones en masa en Chile . Santiago : Servicio nacional de Geología y Minería .
- IAEG. (1900-2000). Commission on Landslides contributed to the Working. Classification which records an international consensus on types of landslides.
- Iriondo, M. H. (2007). Introduccíon a la Geología. Editorial Brujas.
- Lopez, G. (2023). Levantamiento geomorfológico a escala 1:10.000 con la utilización de la herramienta SIG de la parroquia rural Santiago, cantón y provincia de Loja .

  Loja: Universidad Nacional de Loja .
- Mora, R. (1993). Fundamentos sobre deslizamientos. Canada: Obtenido de FUNDAMENTOS SOBRE LOS DESLIZAMIENTOS: http://www.bvsde.paho.org/bvsade/e/fulltext/uni/conf15.pdf.
- SGC Colombia, S. (2015). Vuelva para ver los detalles sobre Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Servicio Geologico Colombiano- SGC .
- Suárez, B. L. (2016). Análisis de estabilidad de taludes. Medellín.

Varnes, D. (1978). *Tipos de movimientos de pendiente y procesos*. Washington DC: Junta de Investigación de la.

Wolf, P. y. (2015). *Topografía* . Alpha Editorial .

#### 11. Anexos

## Anexo 1. Metodología de la topografía

## > Fase campo

Los parámetros generales que se consideraron en el equipo previo a realizar el levantamiento topográfico con dron son: longitud de distancia focal, ángulo de visión, velocidad de obturación, área de traslape, la resolución del sensor de la cámara fotográfica (Ground Surface Distance - GSD).



Ilustración 1. Dron previo realizar las líneas de vuelo

En el levantamiento, se utilizaron las aplicaciones DJI Go 4, en donde se inicializa el equipo, es decir, se estableció la captación de la señal de mínimo 12 satélites; se calibra el giroscopio, acelerómetro, brújula y cámara; para finalmente establecer el punto de retorno, este último es el punto georreferenciado desde el que parte el equipo, y que será tomado como referencia durante el levantamiento.

Posteriormente, con ayuda de la aplicación Pix4DCapture, se ejecutó el levantamiento; las consideraciones generales de esta herramienta son la altura a la que se debe posicionar la aeronave, porque está relacionado directamente con el GSD, ángulo de la cámara que debe estar a 90° y un área de traslape de 80%. Debemos esperar a que los parámetros se actualicen y presionar "Start", el levantamiento se realizó de manera automática, sin embargo, el operario debe superviso el proceso en todo momento; finalmente la aeronave regreso al punto de inicio, y la información se guardó en la tarjeta de memoria que incluye el equipo.

En este caso de este levantamiento, se realizaron 9 líneas de vuelo con un total de 174 imágenes



Ilustración 2. Inspección de las líneas de vuelo del Dron

### > Fase de oficina

El procesamiento de las ortofotografías se desarrollaron en el software Pix4D mapper a lo largo de 3 pasos generales. En el paso 1 o Procesamiento Inicial, se establecieron las coincidencias entre cada una de las fotografías, al finalizar el proceso, en el informe de calidad debe existir una optimización de cámara con error al 0% y una distribución en el solape de al menos 5 fotografías por zona. En este sentido, es importante mencionar que para que haya un correcto traslape deben existir como mínimo 3 fotografías por zona.

En este paso se tomaron en consideración de que, si la calibración de las cámaras o fotografías no es la correcta, se debe ejecutar las opciones de optimización y calibración de las imágenes. Seguidamente, se establecieron los puntos de paso y puntos de control, este proceso es fundamental para señalar de manera supervisada las zonas coincidentes en las fotografías.

En el paso 2 a seguir es la Nube de puntos y malla, en la opción nube de puntos se indica que se genere una clasificación para estos puntos. Las opciones adicionales no se modificaron.

El paso 3 o MDS, Ortomosaico e Indices; se exportaron los archivos resultantes del procesamiento, como son Modelo Digital del Terreno (MDT), ortomosaico y curvas de nivel. En esta configuración es importante indicar la creación del raster MDS en formato GeoTIFF utilizando el método Ponderación de la Distancia Inversa. En resultados adicionales, se debe indicar la creación del MDT. Finalmente las curvas de nivel cada metro, se exportaron en formato .shp y .dxf, con estos datos se procedió a levantar todos los elementos estructurales y se obtuvo un mapa topográfico del lugar de investigación.

# Anexo 2. Metodología utilizada para el sondeo eléctrico vertical

# Sondeo eléctrico vertical (SEV)

La resistividad eléctrica es la habilidad de un material para resistir el flujo de la corriente a través de él.

El método de resistividad eléctrica por corriente continua, en la modalidad de sondajes eléctricos verticales (SEV) es utilizada para investigar la distribución vertical de los materiales en el subsuelo y el grado de saturación de agua en la roca, a partir del procesamiento e interpretación de una curva de resistividad aparente contra la profundidad.

La resistividad aparente (ca) se calcula por la siguiente fórmula:

$$\varsigma_{a} = K \frac{\Delta V}{I} \tag{1}$$

Donde:

**K** = coeficiente geométrico (m)

ΔV= diferencia de potencial en milivoltios (mV)

I = intensidad de la corriente continua en miliamperios (mA)

 $\varsigma_a$ = resistividad aparente en ohmios metro ( $\Omega$ m)

Este método permite comprender mejor la estructura del subsuelo de forma indirecta, gracias a que la respuesta eléctrica dependerá esencialmente de la composición mineralógica (contenido de arcilla), propiedades físico-mecánicas (porosidad) y grado de saturación de los materiales componentes del subsuelo.

Para alcanzar este objetivo es necesario que se cumplan tres condiciones que son las siguientes:

- Las diversas formaciones litológicas tienen que ser caracterizadas por diferentes resistividades eléctricas.
- La corriente eléctrica enviada desde la superficie debe penetrar con profundidad (mínimo 90 %) hasta alcanzar los objetivos que se hayan propuesto estudiar.
- ➤ Las deformaciones del campo eléctrico o si se prefiere las perturbaciones al recorrido de la corriente por las heterogeneidades del subsuelo, deben ser medibles a partir de la superficie.

La resistividad eléctrica con corriente directa (DC) está basado en la utilización de corriente continua o alterna con una frecuencia no mayor a 20 Hz. El método consiste en introducir corriente eléctrica al subsuelo desde la superficie por medio de dos

electrodos **A y B** llamados electrodos de corriente (I) y medir la caída de potencial eléctrico con dos electrodos **M y N**, llamados electrodos de potencial (V). (¡Error! No se encuentra el origen de la referencia.9)

Tanto los electrodos de corriente como los de potencial, se desplazan horizontalmente y en línea recta, alejándose de forma equidistante desde el punto 0, en donde se realiza la medida. La investigación así obtenida es perpendicular a este punto, mientras mayor es la distancia entre los electrodos de corriente (A - B) mayor será la profundidad de investigación.

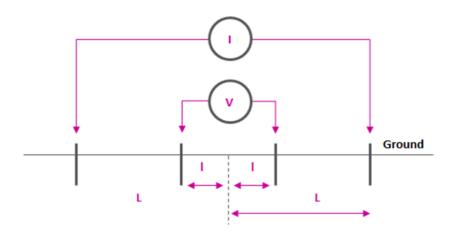



Ilustración 1 Configuración del dispositivo Schulberger

La configuración de electrodos más empleada es Schlumberger (Ilustración) en el cual la distancia entre los electrodos de AM y NB es igual y MN[1/3AB a 1/5AB, como configuración recomendada, pero no limitante. Todos los electrodos se distribuyen sobre una misma línea con un punto de simetría llamado punto medio.

La constante geométrica del arreglo Schlumberger se calcula por la siguiente formula:

$$k = \frac{\pi (\vec{A} \cdot \vec{M})}{4\vec{M}} \tag{2}$$

La profundidad de investigación que se alcanza con el uso de la configuración Schlumberger, suele ser entre un medio a un tercio de espacio entre los electrodos de corriente (AB/2 – AB/3). Valores de resistividad eléctrica por debajo de esta profundidad no son lo suficientemente confiables.

Los resultados obtenidos de los ensayos se representan en un gráfico log-log, donde el eje horizontal es una representación en escala logarítmica de la mitad de la distancia entre los electrodos de corriente (AB/2), y el eje vertical es una representación en escala logarítmica de la resistividad aparente ( $\varsigma_a$ ). Una tendencia creciente o

decreciente a lo largo de una curva de resistividad aparente generalmente indica el efecto de otra capa con mayor o menor resistividad que la anterior.

### Procesamiento de datos

La interpretación de los datos de resistividad eléctrica se la realiza en dos etapas que consisten en lo siguiente:

En la primera etapa, se realiza una interpretación cuantitativa y cualitativa de las curvas de los sondeos eléctricos verticales, la misma que consiste en una comparación manual de las curvas obtenidas en el campo con las curvas teóricas establecidas en los libros de Resistividad Eléctrica, escritos por los por los autores Orellana - Mooney y Pilaeb A. M (1966).

Se utiliza el programa IPI2win para la inversión de los datos, y obtener los valores de resistividad real; para presentación de resultados el software WinSEV.

Anexo 3. Afloramientos de granodiorita.

| Caracterización de | el Afloramiento N° 1 |                    |                  | Descripción     |  |  |  |  |  |  |  |  |
|--------------------|----------------------|--------------------|------------------|-----------------|--|--|--|--|--|--|--|--|
|                    |                      |                    |                  | Superficie:     |  |  |  |  |  |  |  |  |
| Marie Commence Si  | 3                    |                    |                  | vegetación      |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | escasa          |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  |                 |  |  |  |  |  |  |  |  |
|                    | Capa 1: Capa         |                    |                  |                 |  |  |  |  |  |  |  |  |
|                    | de arcilla de 10     |                    |                  |                 |  |  |  |  |  |  |  |  |
| 1.60 m             | centímetros de       |                    |                  |                 |  |  |  |  |  |  |  |  |
|                    |                      |                    | 1000000          | potencia esta   |  |  |  |  |  |  |  |  |
|                    | -                    |                    |                  | arcilla es      |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  |                 |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | meteorización   |  |  |  |  |  |  |  |  |
| Ubicación          | Afloramiento junto   | ericana, se está   | de la            |                 |  |  |  |  |  |  |  |  |
| referencia         | aprovechando del     | obras civiles de   | granodiorita     |                 |  |  |  |  |  |  |  |  |
|                    | particulares.        | particulares.      |                  |                 |  |  |  |  |  |  |  |  |
|                    | W 000004             |                    | Granodiorita con |                 |  |  |  |  |  |  |  |  |
| Coordenadas        | <b>X</b> : 690031    | <b>Y</b> : 9578978 | <b>Z</b> : 2655  | una potencia es |  |  |  |  |  |  |  |  |
|                    |                      |                    | m.s.n.m.         | de 9.5 metros   |  |  |  |  |  |  |  |  |
| Clima              | Templado frio        | Vegetación         | Escasa           | tomados desde   |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | la vereda de la |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | vía, presenta   |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | xenolitos de 14 |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | centímetros en  |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  | su estructura.  |  |  |  |  |  |  |  |  |
| Grado de           | Roca no muy          | Tipo de            | Antrópico        | Сара 3:         |  |  |  |  |  |  |  |  |
| meteorización      | alterada             | afloramiento       |                  |                 |  |  |  |  |  |  |  |  |
| Dimensión          | Ancho : 12           | Altura total: 10   | metros           |                 |  |  |  |  |  |  |  |  |
|                    | metros               |                    |                  |                 |  |  |  |  |  |  |  |  |
| Datos              | Rumbo: Roca          | Buzamiento: Ro     |                  |                 |  |  |  |  |  |  |  |  |
| estructurales      | intrusiva            |                    |                  |                 |  |  |  |  |  |  |  |  |
|                    |                      |                    |                  |                 |  |  |  |  |  |  |  |  |
| Formación          | Batolito de San Luc  | as, Granodiorita   |                  |                 |  |  |  |  |  |  |  |  |
| geológica          |                      |                    |                  |                 |  |  |  |  |  |  |  |  |
| L                  | 1                    |                    |                  | 1               |  |  |  |  |  |  |  |  |

| Caracterización de      | el Afloramiento N° 2  |                                            |                         | Descripción                                                                                                                                                                   |  |  |  |  |  |  |
|-------------------------|-----------------------|--------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                         | O me ros              |                                            |                         | Superficie:  vegetación de arbustos (aliso este arbusto tiente a crecer en lugares donde presenta húmeda.  Capa 1: Capa de material orgánico de 20 centímetros producto de la |  |  |  |  |  |  |
| Ubicación<br>referencia | Afloramiento dentro   | Afloramiento dentro del movimiento en masa |                         |                                                                                                                                                                               |  |  |  |  |  |  |
| Coordenadas             | <b>X</b> : 689957     | <b>Y</b> : 9578868                         | <b>Z:</b> 2665 m.s.n.m. | limosa producto de la meteorización                                                                                                                                           |  |  |  |  |  |  |
| Clima                   | Templado frio         | Vegetación                                 | Arbustos (Aliso)        | de la granodiorita                                                                                                                                                            |  |  |  |  |  |  |
| Grado de meteorización  | Roca<br>meteorizada   | Tipo de afloramiento                       | Antrópico               | Сара 3:                                                                                                                                                                       |  |  |  |  |  |  |
| Dimensión               | Ancho : 12 metros     | Altura total: 13                           |                         |                                                                                                                                                                               |  |  |  |  |  |  |
| Datos<br>estructurales  | Rumbo: Roca intrusiva | Buzamiento: Ro                             |                         |                                                                                                                                                                               |  |  |  |  |  |  |
| Formación<br>geológica  | Batolito de San Luc   | as, Granodiorita                           |                         |                                                                                                                                                                               |  |  |  |  |  |  |

| Caracterización de                                            | el Afloramiento N° 3                                                |                                                                     |                                             | Descripción                                              |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                                                               |                                                                     |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             | vegetación                                               |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     | arbustos y pasto                                                    |                                             |                                                          |  |  |  |  |  |  |  |  |  |
| - 10 m                                                        |                                                                     |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     | The second second                                                   |                                             |                                                          |  |  |  |  |  |  |  |  |  |
|                                                               | Jan - Wall                                                          |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
| A American                                                    | <b>以中国等级</b>                                                        |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
|                                                               | #                                                                   |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
| <b>发生</b> 《集》                                                 | · · · · · · · · · · · · · · · · · · ·                               |                                                                     |                                             | producto de la                                           |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             | misma<br>meteorización                                   |  |  |  |  |  |  |  |  |  |
| Ubicación                                                     | Afloramiento en la p                                                | Afloramiento en la parte de la corona del movimiento en             |                                             |                                                          |  |  |  |  |  |  |  |  |  |
| referencia                                                    | masa                                                                |                                                                     |                                             | de la                                                    |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             | granodiorita                                             |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             | Capa 2: Arena                                            |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     |                                             |                                                          |  |  |  |  |  |  |  |  |  |
| Coordenadas                                                   | <b>X</b> : 689741                                                   | <b>Y</b> : 9578984                                                  | <b>Z</b> : 2790                             | limo-arcillosa                                           |  |  |  |  |  |  |  |  |  |
| Coordenadas                                                   | <b>X</b> : 689741                                                   | <b>Y</b> : 9578984                                                  | <b>Z</b> : 2790                             | producto de la                                           |  |  |  |  |  |  |  |  |  |
|                                                               |                                                                     |                                                                     | m.s.n.m.                                    | producto de la<br>meteorización                          |  |  |  |  |  |  |  |  |  |
| Coordenadas                                                   | X: 689741  Templado frio                                            | Y: 9578984  Vegetación                                              | m.s.n.m. Pasto y                            | producto de la<br>meteorización<br>de la                 |  |  |  |  |  |  |  |  |  |
| Clima                                                         | Templado frio                                                       | Vegetación                                                          | m.s.n.m.  Pasto y arbustos                  | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima<br>Grado de                                             | Templado frio  Roca no muy                                          | Vegetación Tipo de                                                  | m.s.n.m. Pasto y                            | producto de la<br>meteorización<br>de la                 |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización                                 | Templado frio  Roca no muy alterada                                 | Vegetación  Tipo de afloramiento                                    | m.s.n.m.  Pasto y arbustos  Natural         | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima<br>Grado de                                             | Templado frio  Roca no muy alterada  Ancho : 20                     | Vegetación Tipo de                                                  | m.s.n.m.  Pasto y arbustos  Natural         | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización  Dimensión                      | Templado frio  Roca no muy alterada  Ancho : 20 metros              | Vegetación  Tipo de afloramiento  Altura total: 9.5                 | m.s.n.m.  Pasto y arbustos  Natural  metros | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización  Dimensión  Datos               | Templado frio  Roca no muy alterada  Ancho : 20 metros  Rumbo: Roca | Vegetación  Tipo de afloramiento                                    | m.s.n.m.  Pasto y arbustos  Natural  metros | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización  Dimensión                      | Templado frio  Roca no muy alterada  Ancho : 20 metros              | Vegetación  Tipo de afloramiento  Altura total: 9.5                 | m.s.n.m.  Pasto y arbustos  Natural  metros | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización  Dimensión  Datos estructurales | Roca no muy alterada Ancho : 20 metros Rumbo: Roca intrusiva        | Vegetación  Tipo de afloramiento  Altura total: 9.5  Buzamiento: Ro | m.s.n.m.  Pasto y arbustos  Natural  metros | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |
| Clima  Grado de meteorización  Dimensión  Datos               | Templado frio  Roca no muy alterada  Ancho : 20 metros  Rumbo: Roca | Vegetación  Tipo de afloramiento  Altura total: 9.5  Buzamiento: Ro | m.s.n.m.  Pasto y arbustos  Natural  metros | producto de la<br>meteorización<br>de la<br>granodiorita |  |  |  |  |  |  |  |  |  |

| Caracterización de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Descripción                         |                 |                  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|------------------|--|--|--|--|--|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | Superficie:      |  |  |  |  |  |
|                    | - The state of the |                                     |                 | vegetación       |  |  |  |  |  |
|                    | arbustos y pasto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                 |                  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                  |  |  |  |  |  |
| - action to        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | Capa 1: Capa     |  |  |  |  |  |
| Ü                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | de arcilla de 20 |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | centímetros de   |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | materia          |  |  |  |  |  |
| * 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | orgánica         |  |  |  |  |  |
| Ubicación          | producto de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                 |                  |  |  |  |  |  |
| referencia         | masa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | masa                                |                 |                  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 | Capa 2: Arena    |  |  |  |  |  |
| Coordenadas        | <b>X</b> : 689818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Y</b> : 9579032                  | <b>Z</b> : 2763 | limosa debido a  |  |  |  |  |  |
| Coordenadas        | A: 009010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1:9579032                           |                 | la meteorización |  |  |  |  |  |
| Clima              | Tanania da fria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vogatación                          | m.s.n.m.        | de la            |  |  |  |  |  |
| Clima              | Templado frio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vegetación                          | Pasto y         | granodiorita.    |  |  |  |  |  |
| Grado de           | Roca no muy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time ale                            | arbustos        | Capa 3:          |  |  |  |  |  |
| meteorización      | Roca no muy<br>alterada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tipo de afloramiento                | Natural         | Сара з:          |  |  |  |  |  |
| Dimensión          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | a a tra a       |                  |  |  |  |  |  |
| Dimension          | 7410110 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Altura total: 7 m                   | netros          |                  |  |  |  |  |  |
|                    | metros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                 |                  |  |  |  |  |  |
| Datos              | Rumbo: Roca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Buzamiento: Ro                      | ca intrusiva    |                  |  |  |  |  |  |
| estructurales      | intrusiva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                 |                  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                  |  |  |  |  |  |
| Formación          | Batolito de San Luc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Batolito de San Lucas, Granodiorita |                 |                  |  |  |  |  |  |
| geológica          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                 |                  |  |  |  |  |  |

Anexo 4. Ensayos de clasificación ASTM D2487-AASHTO 3282 - 2487

: "CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".

OBRA : ESTUDIO DE MECÁNICA DE SUELOS

UBICACIÓN: SECTOR LA LLORONA, PARROQUIA SANTIAGO, CANTÓN LOJA.

OPERADOR : D.O. MUESTRA : SONDEO 1

FECHA : DICIEMBRE-2023 PROFUNDIDAD :1.00 m

|                      | GOLPES | W HM.(gr) | W SECO (gr)     | W CAPS (gr) | w %   | RESULTADO% |  |  |  |
|----------------------|--------|-----------|-----------------|-------------|-------|------------|--|--|--|
| 1 CONTENIDO HUMEDA   | VD     | 56.68     | 53.24           | 18.52       | 9.91  | 9.68       |  |  |  |
|                      |        | 59.77     | 56.25           | 18.98       | 9.44  | 9.00       |  |  |  |
|                      |        |           |                 |             |       |            |  |  |  |
| 2 LIM. LIQUIDO       | 33     | 32.30     | 29.46           | 19.08       | 27.36 |            |  |  |  |
|                      | 27     | 33.10     | 29.88           | 18.29       | 27.78 | 28.05      |  |  |  |
|                      | 22     | 32.95     | 29.81           | 18.73       | 28.34 | 20.03      |  |  |  |
|                      | 16     | 32.36     | 29.24           | 18.60       | 29.32 |            |  |  |  |
|                      |        |           |                 |             |       |            |  |  |  |
| 3 LIMITE PLASTICO    |        | 23.46     | 22.51           | 18.54       | 23.93 | 23.95      |  |  |  |
|                      |        | 23.61     | 22.68           | 18.80       | 23.97 | 23.95      |  |  |  |
|                      |        |           |                 |             |       |            |  |  |  |
| 4 GRANULOMETRIA      |        |           | 5 CLASIFICACION |             |       |            |  |  |  |
|                      |        |           |                 |             |       |            |  |  |  |
|                      |        |           |                 | GRAVA=      | 2.82  | 8          |  |  |  |
|                      |        |           |                 | ARENA=      | 78.83 | ଚ          |  |  |  |
| PESO INICIAL DE CALC | CULO:  | 100.17 gr |                 | FINOS=      | 18.34 | ે          |  |  |  |

| PESO INICIAL DE CALCULO: 100.17 gr |             |          |           |  |  |  |  |  |  |  |  |  |
|------------------------------------|-------------|----------|-----------|--|--|--|--|--|--|--|--|--|
| LESO INI                           | CIAL DE CAL | COLO.    | 100.17 gr |  |  |  |  |  |  |  |  |  |
| TAMIZ                              | ESO R (g    | r % R.A. | % PASA    |  |  |  |  |  |  |  |  |  |
| 1 1/2"                             | 0.00        | 0.00     | 100       |  |  |  |  |  |  |  |  |  |
| 1"                                 | 0.00        | 0.00     | 100       |  |  |  |  |  |  |  |  |  |
| 3/4"                               | 0.00        | 0.00     | 100       |  |  |  |  |  |  |  |  |  |
| 1/2"                               | 0.00        | 0.00     | 100       |  |  |  |  |  |  |  |  |  |
| 3/8"                               | 0.00        | 0.00     | 100       |  |  |  |  |  |  |  |  |  |
| No. 4                              | 2.58        | 2.82     | 97        |  |  |  |  |  |  |  |  |  |
| No. 10                             | 12.85       | 16.89    | 83        |  |  |  |  |  |  |  |  |  |
| No. 40                             | 36.29       | 56.63    | 43        |  |  |  |  |  |  |  |  |  |
| No. 200                            | 22.86       | 81.66    | 18        |  |  |  |  |  |  |  |  |  |
| COLOR                              | : CAFÉ AMA  | RILLENTO |           |  |  |  |  |  |  |  |  |  |

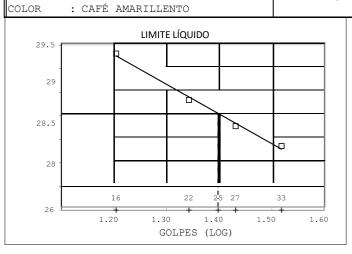
| GRAVA=            | 2.82 %          |    |
|-------------------|-----------------|----|
| ARENA=            | 78.83 %         |    |
| FINOS=            | 18.34 %         |    |
| LL =              | 28.00 %         |    |
| LP =              | 24.00 %         |    |
| IP =              | 4.00 %          |    |
| cu                | 73.09           |    |
| cc                | 3.67            |    |
|                   |                 |    |
| CLASIFIC          | CACION:         |    |
| SUCS =            | SM              |    |
| Arena             | limosa          |    |
| AASHTO= A-1-b     | IG 0            |    |
| Fragmentos de Roc | ca, Grava y Are | na |

Excelente a Bueno

LIMITE LÍQUIDO 29.5 29 28.5 4 28 25 27 16 1.20 1.30 1.40 1.50 1.60 GOLPES (LOG)

: "CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL PROYECTO

SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".


OBRA : ESTUDIO DE MECÁNICA DE SUELOS

UBICACIÓN: SECTOR LA LLORONA, PARROQUIA SANTIAGO, CANTÓN LOJA.

OPERADOR : D.O. MUESTRA : SONDEO 1

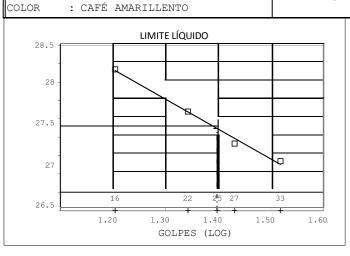
FECHA : DICIEMBRE-2023 PROFUNDIDAD :2.00 m

|           |             | GOLPES | W HM.(gr) | W SECO (gr) | W CAPS (gr)  | w %      | RESULTADO% |
|-----------|-------------|--------|-----------|-------------|--------------|----------|------------|
| 1 CONTEN  | NIDO HUMEDA | .D     | 40.68     | 38.70       | 18.58        | 9.84     | 10.39      |
|           |             |        | 38.74     | 36.73       | 18.34        | 10.93    | 10.39      |
| 2 LIM. I  | LIQUIDO     | 33     | 32.30     | 29.46       | 19.08        | 27.36    |            |
|           |             | 27     | 33.10     | 29.88       | 18.29        | 27.78    | 28.05      |
|           |             | 22     | 32.95     | 29.81       | 18.73        | 28.34    | 20.03      |
|           |             | 16     | 32.36     | 29.24       | 18.60        | 29.32    |            |
| 3 LIMITE  | E PLASTICO  |        | 23.46     | 22.51       | 18.54        | 23.93    | 23.95      |
|           |             |        | 23.61     | 22.68       | 18.80        | 23.97    | 23.33      |
| 4 GRANUI  | LOMETRIA    |        |           | 5 CLASIFIC  | CACION       |          |            |
|           |             |        |           |             | GRAVA=       | 2.60     | 용          |
|           |             |        |           |             | ARENA=       | 73.95    | 용          |
| PESO INIC | IAL DE CALC | CULO:  | 90.17 gr  |             | FINOS=       | 23.45    | %          |
|           |             |        |           | ]           | LL =         | 28.00    | 용          |
| TAMIZ     | ESO R (gr   | % R.A. | % PASA    |             | LP =         | 24.00    | 용          |
| 1 1/2"    | 0.00        | 0.00   | 100       |             | IP =         | 4.00     | 용          |
| 1"        | 0.00        | 0.00   | 100       |             | cu           | 112.67   |            |
| 3/4"      | 0.00        | 0.00   | 100       |             | CC           | 3.28     |            |
| 1/2"      | 0.00        | 0.00   | 100       |             |              |          |            |
| 3/8"      | 0.00        | 0.00   | 100       |             | CLASIFICA    | ACION:   |            |
| No. 4     | 2.12        | 2.60   | 97        |             | SUCS =       | SM       |            |
| No. 10    | 10.71       | 15.71  | 84        |             | Arena l      |          |            |
| No. 40    | 29.40       | 51.70  | 48        | AASHTO=     | - A-1-b      | IG       | 0          |
| No. 200   | 20.30       | 76.55  | 23        | Fragme      | ntos de Roca | a, Grava | y Arena    |
|           |             |        |           |             |              |          |            |



: "CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL PROYECTO

SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".


OBRA : ESTUDIO DE MECÁNICA DE SUELOS

UBICACIÓN: SECTOR LA LLORONA, PARROQUIA SANTIAGO, CANTÓN LOJA.

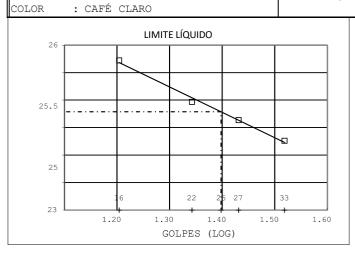
OPERADOR : D.O. MUESTRA : SONDEO 1

FECHA: DICIEMBRE-2023 PROFUNDIDAD: 3.00 m

|                   |              | GOLPES | W HM.(gr) | W SECO (gr) | W CAPS (gr)  | w %       | RESULTADO 9 |
|-------------------|--------------|--------|-----------|-------------|--------------|-----------|-------------|
| 1 CONTE           | NIDO HUMEDA  | .D     | 70.53     | 66.79       | 18.46        | 7.74      | 7.78        |
|                   |              |        | 74.83     | 70.74       | 18.47        | 7.82      | 7.78        |
| 2 LIM.            | LIQUIDO      | 33     | 31.92     | 29.20       | 18.47        | 25.35     |             |
|                   |              | 27     | 34.31     | 31.12       | 18.77        | 25.83     | 26.24       |
|                   |              | 22     | 34.01     | 30.75       | 18.54        | 26.70     | 20.24       |
|                   |              | 16     | 37.21     | 33.16       | 18.62        | 27.85     |             |
| 3 LIMITE PLASTICO |              | 21.57  | 21.07     | 18.58       | 20.08        | 19.93     |             |
|                   |              |        | 20.52     | 20.16       | 18.34        | 19.78     | 19.95       |
| 4 GRANULOMETRIA   |              |        |           | 5 CLASIFI   | CACION       |           |             |
|                   |              |        |           |             | GRAVA=       | 16.61     | 왕           |
|                   |              |        |           |             | ARENA=       | 66.90     | 용           |
| PESO INIC         | CIAL DE CALC | ULO:   | 141.68 gr |             | FINOS=       | 16.49     | 용           |
|                   |              |        |           |             | LL =         | 26.00     | 용           |
| TAMIZ             | ESO R (gr    | % R.A. | % PASA    |             | LP =         | 20.00     | ે           |
| 1 1/2"            | 0.00         | 0.00   | 100       |             | IP =         | 6.00      | 용           |
| 1"                | 0.00         | 0.00   | 100       |             | cu           | 87.67     |             |
| 3/4"              | 0.00         | 0.00   | 100       |             | CC           | 3.90      |             |
| 1/2"              | 16.11        | 12.26  | 88        |             |              |           |             |
| 3/8"              | 2.05         | 13.82  | 86        |             | CLASIFICA    | CION:     |             |
| No. 4             | 3.68         | 16.61  | 83        |             | SUCS =       | SC-SM     |             |
| No. 10            | 16.27        | 28.99  | 71        | Arena l     | imosa y arc: | illosa co | n grava     |
| No. 40            | 44.71        | 63.00  | 37        | AASHTO=     | A-1-b        | IG        | 0           |
| No. 200           | 26.96        | 83.51  | 16        | Fragme      | ntos de Roca | , Grava y | / Arena     |
|                   |              |        |           | _           |              |           |             |



PROYECTO: "CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".


OBRA : ESTUDIO DE MECÁNICA DE SUELOS

UBICACIÓN: SECTOR LA LLORONA, PARROQUIA SANTIAGO, CANTÓN LOJA.

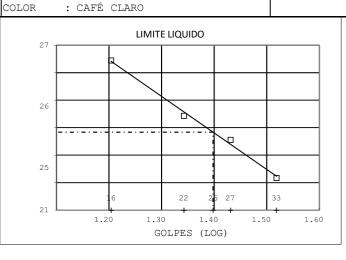
OPERADOR : D.O. MUESTRA : SONDEO 1

FECHA : DICIEMBRE-2023 PROFUNDIDAD :4.00 m

|           |              | GOLPES | W HM.(gr) | W SECO (gr) | W CAPS (gr)   | W %      | RESULTADO% |
|-----------|--------------|--------|-----------|-------------|---------------|----------|------------|
| 1 CONTE   | ENIDO HUMEDA | ۱D     | 58.17     | 55.03       | 18.28         | 8.54     | 8.59       |
|           |              |        | 59.63     | 56.38       | 18.77         | 8.64     | 0.39       |
| 2 LIM.    | LIQUIDO      | 33     | 42.85     | 39.81       | 27.28         | 24.26    |            |
|           |              | 27     | 36.80     | 33.24       | 18.79         | 24.64    |            |
|           |              | 22     | 38.55     | 34.53       | 18.43         | 24.97    | 24.79      |
|           |              | 16     | 31.67     | 28.74       | 17.35         | 25.72    |            |
| 3 LIMIT   | TE PLASTICO  |        | 20.04     | 19.54       | 17.26         | 21.93    | 21.69      |
|           |              |        | 22.06     | 21.53       | 19.06         | 21.46    | 21.69      |
| 4 GRANU   | JLOMETRIA    |        |           | 5 CLASIFI   | CACION        |          |            |
|           |              |        |           |             | GRAVA=        | 1.55     | %          |
|           |              |        |           |             | ARENA=        | 81.25    | %          |
| PESO INIC | CIAL DE CALC | CULO:  | 193.41 gr |             | FINOS=        | 17.20    | 9          |
|           |              |        |           |             | LL =          | 25.00    | 용          |
| TAMIZ     | ESO R (gr    | % R.A. | % PASA    |             | LP =          | 22.00    | 용          |
| 1 1/2"    | 0.00         | 0.00   | 100       |             | IP =          | 3.00     | 용          |
| 1"        | 0.00         | 0.00   | 100       |             | cu            | 56.75    |            |
| 3/4"      | 0.00         | 0.00   | 100       |             | CC            | 3.28     |            |
| 1/2"      | 0.00         | 0.00   | 100       |             |               |          |            |
| 3/8"      | 0.00         | 0.00   | 100       |             | CLASIFICA     | ACION:   |            |
| No. 4     | 2.76         | 1.55   | 98        |             | SUCS =        | SM       |            |
| No. 10    | 22.37        | 14.11  | 86        |             | Arena l       | imosa    |            |
| No. 40    | 70.11        | 53.47  | 47        | AASHTO=     | A-1-b         | IG       | 0          |
| No. 200   | 52.23        | 82.80  | 17        | Fragme      | entos de Roca | a, Grava | y Arena    |



PROYECTO: "CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".


OBRA : ESTUDIO DE MECÁNICA DE SUELOS

UBICACIÓN: SECTOR LA LLORONA, PARROQUIA SANTIAGO, CANTÓN LOJA.

OPERADOR : D.O. MUESTRA : SONDEO 1

FECHA : DICIEMBRE-2023 PROFUNDIDAD :5.00 m

|            |             | GOLPES | W HM.(gr) | W SECO (gr) | W CAPS (gr)   | ₩ %       | RESULTADO%     |
|------------|-------------|--------|-----------|-------------|---------------|-----------|----------------|
| 1 CONTEN   | IDO HUMEDAI | )      | 61.98     | 58.47       | 18.60         | 8.80      | 0.00           |
|            |             |        | 71.58     | 67.04       | 18.59         | 9.37      | 9.09           |
| 2 LIM. L   | IQUIDO      | 33     | 36.14     | 32.94       | 18.51         | 22.18     |                |
|            |             | 27     | 35.49     | 32.22       | 18.34         | 23.56     |                |
|            |             | 22     | 34.66     | 31.43       | 18.21         | 24.43     | 23.84          |
|            |             | 16     | 36.06     | 32.27       | 17.94         | 26.45     |                |
| 3 LIMITE   | PLASTICO    |        | 21.44     | 21.05       | 18.98         | 18.84     | 19.26          |
|            |             |        | 21.34     | 20.86       | 18.42         | 19.67     | 19.20          |
| 4 GRANUL   | OMETRIA     |        |           | 5 CLASIFI   | CACION        |           |                |
|            |             |        |           |             | GRAVA=        | 2.55      | o <sub>o</sub> |
|            |             |        |           |             | ARENA=        | 81.59     | 9              |
| PESO INICI | AL DE CALC  | JLO:   | 149.43 gr |             | FINOS=        | 15.86     | 용              |
|            |             |        |           |             | LL =          | 24.00     | %              |
| TAMIZ      | ESO R (gr   | % R.A. | % PASA    |             | LP =          | 19.00     | ଚ              |
| 1 1/2"     | 0.00        | 0.00   | 100       |             | IP =          | 5.00      | %              |
| 1"         | 0.00        | 0.00   | 100       |             | cu            | 50.80     |                |
| 3/4"       | 0.00        | 0.00   | 100       |             | CC            | 3.70      |                |
| 1/2"       | 0.00        | 0.00   | 100       |             |               |           |                |
| 3/8"       | 0.00        | 0.00   | 100       |             | CLASIFICA     | ACION:    |                |
| No. 4      | 3.49        | 2.55   | 97        |             | SUCS =        | SC-SM     |                |
| No. 10     | 17.70       | 15.47  | 85        | Aı          | rena limosa : | y arcillo | sa             |
| No. 40     | 57.12       | 57.17  | 43        | AASHTO=     | = A-1-b       | -<br>IG   | 0              |
| No. 200    | 36.95       | 84.14  | 16        | Fragme      | ntos de Roca  | , Grava y | / Arena        |
| l          | ,           |        |           | I           |               |           |                |



# Anexo 5. Cálculo de N\_S.P.T. normalizado

CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA.

OBRA: ESTUDIO GEOTÉCNICO

SOLICITADO POR: SR. WILSON SACA

REALIZADO POR: ING. OVIDIO CASTILLO J.

SECTOR: SECTOR LA LLORONA, PARROQUIA SANTIAGO Y CANTÓN LOJA.

POZO: SONDEO 1

| Prof. | ER | 15 | 30    | 45 | N   | Nh (Ers 60) | γ (T/m3) | N. F. | γ' (T/m3) | γ' <b>xH</b> (T/m2) | Cn (Peck 1974) | Nr   | REV. | Ns   | D_perf. (mm) | Nb   | SUCS  | N60 | N160 |
|-------|----|----|-------|----|-----|-------------|----------|-------|-----------|---------------------|----------------|------|------|------|--------------|------|-------|-----|------|
| 1     | 60 | 10 | 12    | 9  | 21  | 60.0        | 1.80     | NO    | 1.80      | 1.80                | 1.34           | 0.75 | NO   | 1.00 | 60           | 1.00 | SM    | 16  | 21   |
| 2     | 60 | 10 | 10    | 11 | 21  | 60.0        | 1.80     | NO    | 1.80      | 3.60                | 1.34           | 0.75 | NO   | 1.00 | 60           | 1.00 | SM    | 16  | 21   |
| 3     | 60 | 36 | R(57) | R  | 100 | 60.0        | 1.90     | NO    | 1.90      | 5.50                | 1.20           | 0.75 | NO   | 1.00 | 60           | 1.00 | SC-SM | 75  | 90   |
| 4     | 60 | 48 | R(54) | R  | 100 | 60.0        | 1.90     | NO    | 1.90      | 7.40                | 1.10           | 0.85 | NO   | 1.00 | 60           | 1.00 | SM    | 85  | 94   |
| 5     | 60 | 44 | R(68) | R  | 100 | 60.0        | 2.00     | NO    | 2.00      | 9.40                | 1.02           | 0.85 | NO   | 1.00 | 60           | 1.00 | SC-SM | 85  | 87   |

ING. OVIDIO CASTILLO J.

CONSULTOR

# CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA.

ESTUDIO GEOTÉCNICO OBRA: COORDENADAS

SOLICITADO POR: SR. WILSON SACA ESTE: 689958.7 m

REALIZADO POR: ING. OVIDIO CASTILLO J. NORTE: 9578879.8 m ALTURA: 2629.00 ms.n.m

SECTOR: SECTOR LA LLORONA, PARROQUIA SANTIAGO Y CANTÓN LOJA.

POZO: SONDEO 1

| POZO     | PROF. C. H. |       | L. L. | L. P. | L. P. I. P. G |       | ARENA | FINOS | CLASIFIC |        | N60    | N160   | qultneta           | qadmneta           | C STROUD 1974      | Ø (OSAKI 1959) |
|----------|-------------|-------|-------|-------|---------------|-------|-------|-------|----------|--------|--------|--------|--------------------|--------------------|--------------------|----------------|
|          | m.          | %     | %     | %     | %             | %     | %     | %     | SUCS     | AASHTO | golpes | golpes | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | Kg/cm <sup>2</sup> | 0              |
| SONDEO 1 | 1.00        | 9.68  | 28    | 24    | 4             | 2.82  | 78.83 | 18.35 | SM       | A-I-b  | 16     | 21     | 4.73               | 1.58               |                    | 33             |
|          | 2.00        | 10.39 | 28    | 24    | 4             | 2.60  | 73.95 | 23.45 | SM       | A-1-b  | 16     | 21     | 4.73               | 1.58               |                    | 33             |
|          | 3.00        | 7.78  | 26    | 20    | 6             | 16.61 | 66.90 | 16.49 | SC-SM    | A-1-b  | 75     | 90     | 22.50              | 7.50               |                    | 54             |
|          | 4.00        | 8.59  | 25    | 22    | 3             | 1.55  | 81.25 | 17.20 | SM       | A-1-b  | 85     | 94     | 25.50              | 8.50               |                    | 56             |
|          | 5.00        | 9.09  | 24    | 19    | 5             | 2.55  | 81.59 | 15.86 | SC-SM    | A-1-b  | 85     | 87     | 25.50              | 8.50               |                    | 56             |

ING. OVIDIO CASTILLO J. CONSULTO

|          | (r       | STANDARD PENETRATION TEST (S.P.T.) |      |      |      | CLASIFICACIÓN S.U.C.S. |    |          |        |         | Perfil   |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
|----------|----------|------------------------------------|------|------|------|------------------------|----|----------|--------|---------|----------|-----|-----|-------|---------|--------|-----|--------|-------|-------|------------------------------|------|-----------------------------------|----------|------------------------|
| PROF.    | N.F. (m) | 15                                 | 30   | 45   | SPT  |                        | GR | ÁFIC     | O DE G | OLPES   | DE SP    | Т   | w   | LÍMIT | ES ATTE | ERBERG | GRA | NULOMI | ETRÍA | erree | estratigráfico<br>Simbología |      | ráfico Descripción del Suelo (Sue |          | Compacidad<br>Relativa |
| (111)    | Ż        | 15                                 | 30   | 45   | S    | 0                      |    | 20       | 40     | 60      | 80       | 100 | (%) | L.L.  | L.P.    | I.P.   | G   | A      | F     | SUCS  |                              |      |                                   |          | (arena)                |
| 0        |          |                                    |      |      |      | Ľ                      |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
|          |          |                                    |      |      |      |                        |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
| 1.0      |          | 10                                 | 12   | 9    | 21   | П                      |    |          |        |         |          |     | 10  | 28    | 24      | 4      | 3   | 79     | 18    | SM    |                              |      | Arena limosa                      |          | Media                  |
|          |          |                                    |      |      |      |                        | Ť  | •        |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
| 2.0      |          | 10                                 | 10   | 11   | 21   |                        |    |          |        |         |          |     | 10  | 28    | 24      | 4      | 3   | 74     | 23    | SM    |                              |      |                                   |          |                        |
| 2.0      |          | 10                                 | 10   | - 11 |      | H                      | •  | <b>.</b> |        |         |          | ++  | 10  | 20    | 2-7     |        | 3   | /      | 23    | SIVI  |                              |      | Arena limosa                      |          | Media                  |
|          |          |                                    |      |      |      |                        |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
| 3.0      |          | 36                                 | R(57 | R    | 100  |                        |    |          |        | ``\     | •        |     | 8   | 26    | 20      | 6      | 17  | 67     | 16    | SC-SM |                              | 0 0  | Arena limosa y arcillosa          |          | Muy Compacta           |
|          |          |                                    |      |      | ijit |                        |    |          |        |         | \        | Ш   |     |       |         |        |     |        |       |       | 0                            | °, ° | con grava                         |          | may compaca            |
| 4.0      |          | 48                                 | R(54 | R    | 100  |                        |    |          |        |         | /        |     | 9   | 25    | 22      | 3      | 2   | 81     | 17    | SM    |                              |      |                                   |          |                        |
|          |          |                                    |      |      |      |                        |    |          |        |         | Ĭ        |     |     |       |         |        |     |        |       |       |                              |      | Arena limosa                      |          | Muy Compacta           |
| 5.0      |          | 44                                 | R(68 | R    | 100  |                        |    |          |        |         |          |     | 9   | 24    | 19      | 5      | 3   | 82     | 16    | SC-SM |                              |      |                                   |          |                        |
|          |          |                                    |      |      |      |                        |    |          |        |         | 1        |     |     |       |         |        |     |        |       |       |                              |      | Arena limosa y arcillosa          |          | Muy Compacta           |
| 5.3      |          |                                    |      |      |      |                        |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
|          |          |                                    |      |      |      |                        |    | G<br>N   |        | DE GOLF | PES DE S | PT_ |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
| <b> </b> | L        | LJ                                 |      | l    | L    | ┖┤                     |    |          | 00     |         |          | ₩.  | J   |       |         |        |     |        |       |       | L                            |      | L                                 | <u> </u> | L                      |
|          |          |                                    |      |      |      |                        |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |
|          |          |                                    |      |      |      |                        |    |          |        |         |          |     |     |       |         |        |     |        |       |       |                              |      |                                   |          |                        |

ING. OVIDIO CASTILLO J. CONSULTO

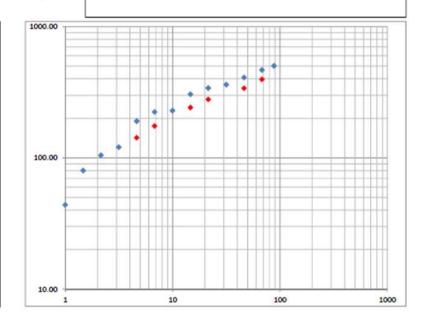
### Anexo 6. Registro de mapo (SEV)

#### Fecha: 20 Diciembre de 2023

#### SONDEO ELÉCTRICO VERTICAL ARREGLO SCHLUMBERGER



"CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA


Proyecto: SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".

 Solicita:
 Sr. Wilson Saca
 SEV:
 1

 Coordendas:
 X: 689841
 Y: 9578926
 Dirección:
 SW/NE

Operador: Ing. Carlos Collaguazo

| 1<br>1.47<br>2.15<br>3.16<br>4.64<br>4.64 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2 | 7.54<br>16.66<br>35.99<br>78.11 | 5.8164<br>4.808<br>2.9068 | 43.85<br>80.09<br>104.62 |
|-------------------------------------------|---------------------------------|---------------------------------|---------------------------|--------------------------|
| 2.15<br>3.16<br>4.64                      | 0.2                             | 35.99                           |                           |                          |
| 3.16<br>4.64                              | 0.2                             |                                 | 2.9068                    | 104 62                   |
| 4.64                                      |                                 | 78 11                           |                           | 104.01                   |
|                                           | 0.2                             | 10.44                           | 1.5448                    | 120.67                   |
| 4.64                                      | 0.2                             | 168.78                          | 0.84418                   | 142.48                   |
|                                           | 0.5                             | 66.85                           | 2.8489                    | 190.45                   |
| 6.81                                      | 0.2                             | 363.92                          | 0.4808                    | 174.97                   |
| 6.81                                      | 0.5                             | 144.91                          | 1.544                     | 223.74                   |
| 10                                        | 0.5                             | 313.37                          | 0.73205                   | 229.41                   |
| 14.7                                      | 0.5                             | 678.08                          | 0.45018                   | 305.26                   |
| 14.7                                      | 2                               | 166.58                          | 1.4512                    | 241.73                   |
| 21.5                                      | 0.5                             | 1451.42                         | 0.2346                    | 340.50                   |
| 21.5                                      | 2                               | 359.91                          | 0.7748                    | 278.86                   |
| 31.6                                      | 2                               | 781.13                          | 0.46234                   | 361.15                   |
| 46.4                                      | 2                               | 1687.79                         | 0.20063                   | 338.62                   |
| 46.4                                      | 5                               | 668.52                          | 0.61234                   | 409.36                   |
| 68.1                                      | 2                               | 3639.23                         | 0.10873                   | 395.69                   |
| 68.1                                      | 5                               | 1449.09                         | 0.3224                    | 467.19                   |
| 88.1                                      | 5                               | 2430.53                         | 0.2068                    | 502.63                   |



Ing. Ovidio Castillo Jaramillo LABORATORIO

Tele-fax: (07)2613699. Celular: 093883061-099692335-0980253180 Email: estsuelcon@gmail.com

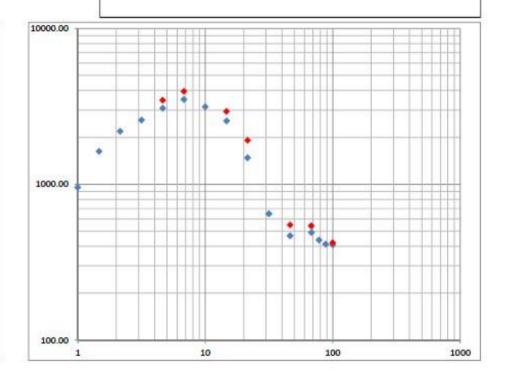
Fecha: 20 Diciembre de 2023

Proyecto:

#### SONDEO ELÉCTRICO VERTICAL ARREGLO SCHLUMBERGER



"CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA


SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".

Solicita: Sr. Wilson Saca SEV: 2

Coordendas: X: 689894 Y: 9578916 Dirección: SW/NE

Operador: Ing. Carlos Collaguazo

| AB/2 | MN/2 | K       | Δv/i    | Pa      |
|------|------|---------|---------|---------|
| 1    | 0.2  | 7.54    | 126.787 | 955.95  |
| 1.47 | 0.2  | 16.66   | 97.782  | 1628.80 |
| 2.15 | 0.2  | 35.99   | 60.934  | 2193.07 |
| 3.16 | 0.2  | 78.11   | 33.097  | 2585.29 |
| 4.64 | 0.2  | 168.78  | 20.514  | 3462.33 |
| 4.64 | 0.5  | 66.85   | 46.078  | 3080.40 |
| 6.81 | 0.2  | 363.92  | 10.85   | 3948.56 |
| 6.81 | 0.5  | 144.91  | 24.2    | 3506.81 |
| 10   | 0.5  | 313.37  | 10.041  | 3146.59 |
| 14.7 | 0.5  | 678.08  | 3.7625  | 2551.28 |
| 14.7 | 2    | 166.58  | 17.646  | 2939.38 |
| 21.5 | 0.5  | 1451.42 | 1.0193  | 1479.43 |
| 21.5 | 2    | 359.91  | 5.322   | 1915.43 |
| 31.6 | 2    | 781.13  | 0.82813 | 646.87  |
| 46.4 | 2    | 1687.79 | 0.3247  | 548.03  |
| 46.4 | 5    | 668.52  | 0.69901 | 467.30  |
| 68.1 | 2    | 3639.23 | 0.14882 | 541.59  |
| 68.1 | 5    | 1449.09 | 0.3382  | 490.08  |
| 78.1 | 5    | 1908.40 | 0.22987 | 438.68  |
| 88.1 | 5    | 2430.53 | 0.16998 | 413.14  |
| 100  | 5    | 3133.7  | 0.13054 | 409.08  |
| 100  | 10   | 1555.1  | 0.27055 | 420.73  |



Ing. Ovidio Castillo Jaramillo LABORATORIO

Tele-fax: (07)2613699. Celular: 093883061-099692335-0980253180 Email: estsuelcon@gmail.com

#### Fecha: 20 Diciembre de 2023

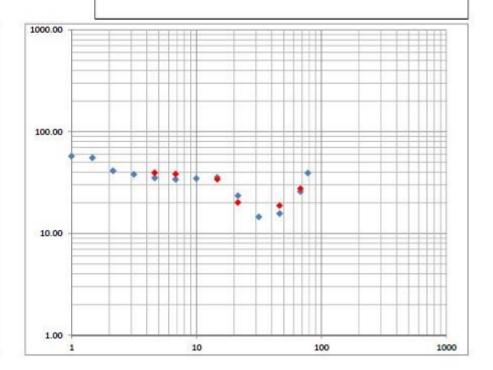
Coordendas:

#### SONDEO ELÉCTRICO VERTICAL ARREGLO SCHLUMBERGER



"CARACTERIZACIÓN MORFOMÉTRICA DE UN MOVIMIENTO DE MASA UBICADO EN EL SECTOR LA LLORONA, PARROQUIA

Dirección: N/S


Proyecto: SANTIAGO, CAMTÓN Y PROVINCIA DE LOJA".

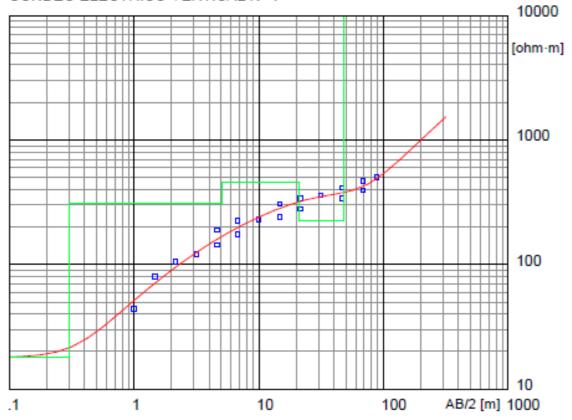
Solicita: Sr. Wilson Saca SEV: Y: 9578877.3

Operador: Ing. Carlos Collaguazo

X: 689960

| AB/2 | MN/2 | K       | Δv/i    | рa    |
|------|------|---------|---------|-------|
| 1    | 0.2  | 7.54    | 7.616   | 57.42 |
| 1.47 | 0.2  | 16.66   | 3.3239  | 55.37 |
| 2.15 | 0.2  | 35.99   | 1.1453  | 41.22 |
| 3.16 | 0.2  | 78.11   | 0.4875  | 38.08 |
| 4.64 | 0.2  | 168.78  | 0.23354 | 39.42 |
| 4.64 | 0.5  | 66.85   | 0.5246  | 35.07 |
| 6.81 | 0.2  | 363.92  | 0.10487 | 38.16 |
| 6.81 | 0.5  | 144.91  | 0.23442 | 33.97 |
| 10   | 0.5  | 313.37  | 0.11047 | 34.62 |
| 14.7 | 0.5  | 678.08  | 0.0523  | 35.46 |
| 14.7 | 2    | 166.58  | 0.20435 | 34.04 |
| 21.5 | 0.5  | 1451.42 | 0.01618 | 23.49 |
| 21.5 | 2    | 359.91  | 0.05582 | 20.09 |
| 31.6 | 2    | 781.13  | 0.01859 | 14.52 |
| 46.4 | 2    | 1687.79 | 0.01109 | 18.72 |
| 46.4 | 5    | 668.52  | 0.02338 | 15.63 |
| 68.1 | 2    | 3639.23 | 0.00755 | 27.48 |
| 68.1 | 5    | 1449.09 | 0.01777 | 25.75 |
| 78.1 | 5    | 1908.40 | 0.02054 | 39.19 |
| 100  | 5    | 3133.74 |         |       |
| 100  | 10   | 1555.1  |         |       |




Ing. Ovidio Castillo Jaramillo LABORATORIO

Tele-fax: (07)2613699. Celular: 093883061-099692335-0980253180 Email: estsuelcon@gmail.com

### Anexo 7. Exploración geofísica

# Sondeo eléctrico Schlumberger - SEV\_01.WS3

## SONDEO ELECTRICO VERTICAL Nº 1

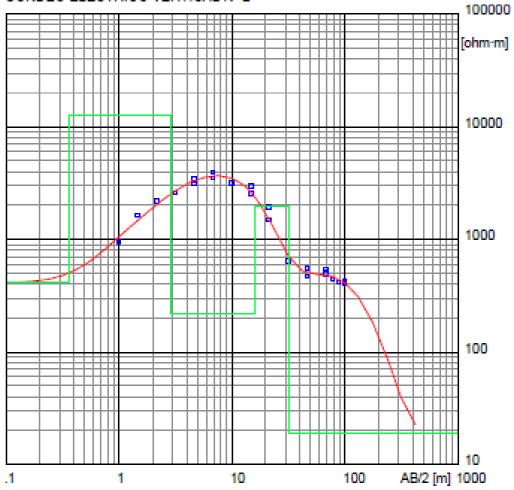


Ubicación del SEV X = 689841 Y = 9578926 Z = 2685

#### Modelo

| Resistividad | Espesor | Profundidad | Altitud |
|--------------|---------|-------------|---------|
| [ohm·m]      | [m]     | [m]         | [m]     |
| 18           | .3      |             | 2685    |
| 313          | 4.8     | .3          | 2684.7  |
| 455          | 16      | 5.1         | 2679.9  |
| 224          | 27      | 21          | 2664    |
| 15760        |         | 48          | 2637    |

# Sondeo eléctrico Schlumberger - SEV\_01.WS3


### SONDEO ELECTRICO VERTICAL Nº 1

Datos de campo y valores calculados

| MN/2 | AB/2 | DeltaV | 1.   |       | esistividad |
|------|------|--------|------|-------|-------------|
| [m]  | [m]  | [mV]   | [mA] | [-]   | [ohm·m]     |
| .2   | 1    | 5.8164 | 1    | 7.54  | 43.9        |
| .2   | 1.47 | 4.808  | 1    | 16.66 | 80.1        |
| .2   | 2.15 | 2.9068 | 1    | 35.99 | 105         |
| .2   | 3.16 | 1.5448 | 1    | 78.11 | 121         |
| .2   | 4.64 | .84418 | 1    | 169   | 143         |
| .5   | 4.64 | 2.8489 | 1    | 66.85 | 190         |
| .2   | 6.81 | .4808  | 1    | 364   | 175         |
| .5   | 6.81 | 1.544  | 1    | 145   | 224         |
| .5   | 10   | .73205 | 1    | 313   | 229         |
| .5   | 14.7 | .45018 | 1    | 678   | 305         |
| 2    | 14.7 | 1.4512 | 1    | 167   | 242         |
| .5   | 21.5 | .2346  | 1    | 1451  | 340         |
| 2    | 21.5 | .7748  | 1    | 360   | 279         |
| 2    | 31.6 | .46234 | 1    | 781   | 361         |
| 2    | 46.4 | .20063 | 1    | 1688  | 339         |
| 5    | 46.4 | .61234 | 1    | 669   | 410         |
| 2    | 68.1 | .10873 | 1    | 3639  | 396         |
| 5    | 68.1 | .3224  | 1    | 1449  | 467         |
| 5    | 88.1 | .2068  | 1    | 2431  | 503         |

### Sondeo eléctrico Schlumberger - SEV\_02.WS3

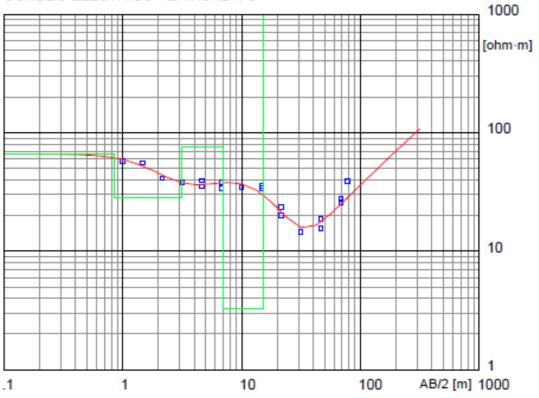
SONDEO ELÉCTRICO VERTICAL Nº 2



Ubicación del SEV X = 689894 Y = 9578916 Z = 2659

| Modelo<br>Resistividad | Espesor | Profundidad | Altitud |
|------------------------|---------|-------------|---------|
| [ohm·m]                | [m]     | [m]         | [m]     |
| 411                    | .36     |             | 2659    |
| 12516                  | 2.5     | .36         | 2658.6  |
| 216                    | 13      | 2.9         | 2656.1  |
| 1981                   | 16      | 16          | 2643    |
| 19                     |         | 32          | 2627    |

## Sondeo eléctrico Schlumberger - SEV\_02.WS3


# SONDEO ELÉCTRICO VERTICAL Nº 2

Datos de campo y valores calculados

| MN/2    | AB/2 | DeltaV  | 1    | K R   | esistividad |
|---------|------|---------|------|-------|-------------|
| [m]     | [m]  | [mV]    | [mA] | [-]   | [ohm·m]     |
| .2      | 1    | 126.787 | 1    | 7.54  | 956         |
| .2      | 1.47 | 97.782  | 1    | 16.66 | 1629        |
| .2      | 2.15 | 60.934  | 1    | 35.99 | 2193        |
| .2      | 3.16 | 33.097  | 1    | 78.11 | 2585        |
| .2      | 4.64 | 20.514  | 1    | 169   | 3467        |
| .5      | 4.64 | 46.078  | 1    | 66.85 | 3080        |
| .2      | 6.81 | 10.85   | 1    | 364   | 3949        |
| .5      | 6.81 | 24.2    | 1    | 145   | 3509        |
| .5      | 10   | 10.041  | 1    | 313   | 3143        |
| .5      | 14.7 | 3.7625  | 1    | 678   | 2551        |
| 2<br>.5 | 14.7 | 17.646  | 1    | 167   | 2947        |
| .5      | 21.5 | 1.0193  | 1    | 1451  | 1479        |
| 2       | 21.5 | 5.322   | 1    | 360   | 1916        |
| 2       | 31.6 | .82813  | 1    | 781   | 647         |
| 2       | 46.4 | .3247   | 1    | 1688  | 548         |
| 5       | 46.4 | .69901  | 1    | 669   | 468         |
| 2       | 68.1 | .14882  | 1    | 3639  | 542         |
| 5       | 68.1 | .3382   | 1    | 1449  | 490         |
| 5       | 78.1 | .22987  | 1    | 1908  | 439         |
| 5       | 88.1 | .16998  | 1    | 2431  | 413         |
| 5       | 100  | .13054  | 1    | 3134  | 409         |
| 10      | 100  | .27055  | 1    | 1555  | 421         |

## Sondeo eléctrico Schlumberger - SEV\_03.WS3

SONDEO ELECTRICO VERTICAL Nº3



Ubicación del SEV X = 689960 Y = 9578877.3 Z = 2629

15

2614

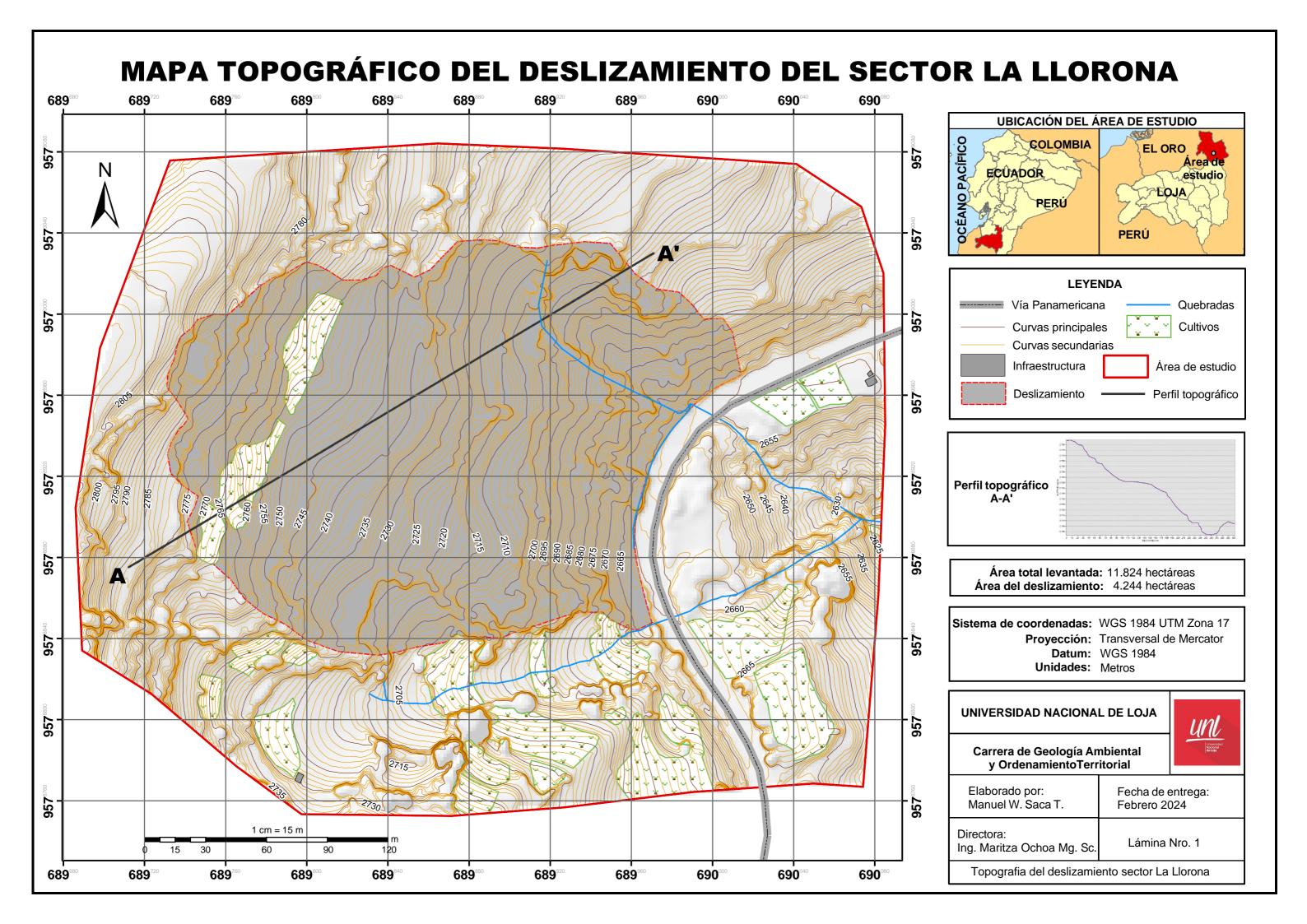
| Modelo<br>Resistividad | Espesor | Profundidad | Altitud |
|------------------------|---------|-------------|---------|
| [ohm·m]                | [m]     | [m]         | [m]     |
| 66                     | .84     |             | 2629    |
| 28                     | 2.3     | .84         | 2628.2  |
| 75                     | 3.9     | 3.1         | 2625.9  |
| 3.3                    | 8.3     | 7           | 2622    |

1098

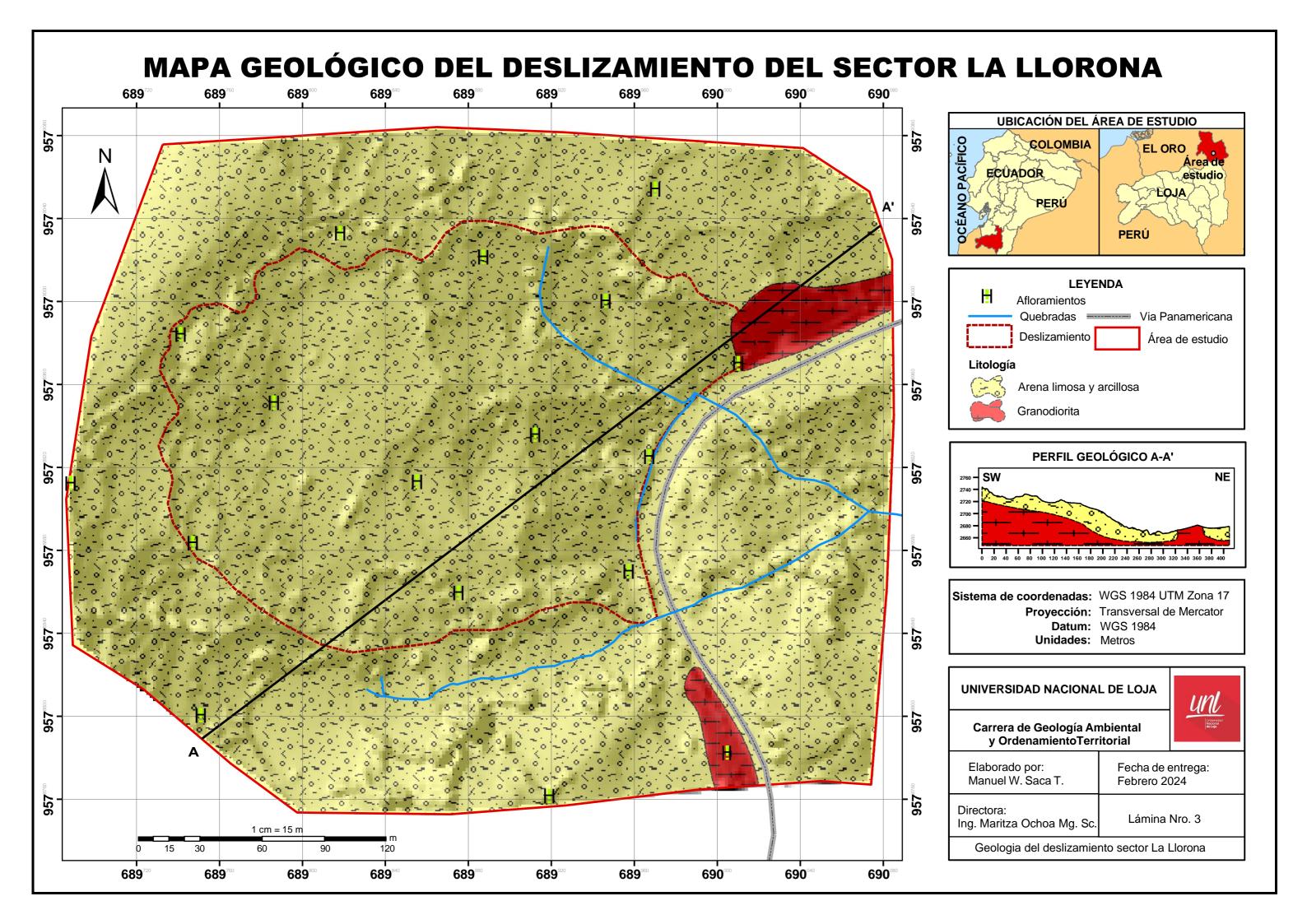
# Sondeo eléctrico Schlumberger - SEV\_03.WS3

## SONDEO ELECTRICO VERTICAL Nº3

## Datos de campo y valores calculados


| MN/2 | AB/2 | DeltaV   | - 1  | K     | Resistividad |
|------|------|----------|------|-------|--------------|
| [m]  | [m]  | [mV]     | [mA] | [-]   | ] [ohm·m]    |
| .2   | 1    | 7.616    | 1    | 7.54  | 57.4         |
| .2   | 1.47 | 3.3239   | 1    | 16.66 | 55.4         |
| .2   | 2.15 | 1.1453   | 1    | 35.99 | 41.2         |
| .2   | 3.16 | .4875    | 1    | 78.11 | 38.1         |
| .2   | 4.64 | .23354   | 1    | 169   | 39.5         |
| .5   | 4.64 | .5246    | 1    | 66.85 | 35.1         |
| .2   | 6.81 | .104867  | 1    | 364   | 38.2         |
| .5   | 6.81 | .234419  | 1    | 145   | 34           |
| .5   | 10   | .11047   | 1    | 313   | 34.6         |
| .5   | 14.7 | .0523    | 1    | 678   | 35.5         |
| 2    | 14.7 | .20435   | 1    | 167   | 34.1         |
| .5   | 21.5 | .016183  | 1    | 1451  | 23.5         |
| 2    | 21.5 | .055817  | 1    | 360   | 20.1         |
| 2    | 31.6 | .018588  | 1    | 781   | 14.5         |
| 2    | 46.4 | .011093  | 1    | 1688  | 18.7         |
| 5    | 46.4 | .023383  | 1    | 669   | 15.6         |
| 2    | 68.1 | .00755   | 1    | 3639  | 27.5         |
| 5    | 68.1 | .0177663 | 1    | 1449  | 25.7         |
| 5    | 78.1 | .020535  | 1    | 1908  | 39.2         |

Anexo 8. Mapa topográfico del área de estudio


Anexo 9. Mapa de pendientes del área de estudio

Anexo 10. Mapa geológico del área de estudio

Anexo 11. Certificado de traducción de resumen del proyecto de titulación



# MAPA DE PENDIENTES DEL DESLIZAMIENTO DEL SECTOR LA LLORONA UBICACIÓN DEL ÁREA DE ESTUDIO **COLOMBIA** EL ORO Área de ECUADOR estudio **EOJA** PERÚ PERÚ **LEYENDA** Ligeramente inclinado Fuertemente inclinado Muy inclinado Empinado Vertical **SIMBOLOGÍA** Via Panamericana Deslizamiento Área de estudio Sistema de coordenadas: WGS 1984 UTM Zona 17 **Proyección:** Transversal de Mercator Datum: WGS 1984 Unidades: Metros **UNIVERSIDAD NACIONAL DE LOJA** unl Carrera de Geología Ambiental y OrdenamientoTerritorial Elaborado por: Fecha de entrega: Manuel W. Saca T. Febrero 2024 Directora: Lámina Nro. 2 Ing. Maritza Ochoa Mg. Sc. 1 cm = 15 mPendientes del deslizamiento sector La Llorona 90 120 689<sup>840</sup> 69000 689<sup>::</sup> 690°4 690°80



# **CERTIFICADO**

Loja, 25 de abril del 2024

Yo, Lilibeth Johana Bravo Fajardo, con documento de identidad Nro. **2100510854**, poseedora del certificado **NIVEL INTERMEDIO AVANZADO B2-INGLÉS**, avalado por Cambridge Assessment English, Número de Verificación: C0018683.

#### **CERTIFICO:**

Que el documento aquí compuesto es fiel a la traducción del idioma Español al idioma Inglés de un resumen del trabajo de titulación, la misma que se realizó en base a los documentos originales entregados por el autor, el Señor MANUEL WILSON SACA TENE, con cédula de identidad Nro. 1105168338, con el tema denominado "Caracterización morfométrica de un movimiento en masa ubicado en el sector La Llorona, parroquia Santiago, cantón y provincia de Loja".

Lo certifico en honor a la verdad, y, a su vez autorizo al interesado a hacer uso del presente documento para los fines que considere pertinentes.

Atentamente,



Ing. Lilibeth Bravo Fajardo

C.I: 2100510854