

Universidad Nacional de Loja

Área Agropecuaria y de Recursos Naturales Renovables

Carrera de Ingeniería Forestal

COMPOSICIÓN FLORÍSTICA Y ESTRUCTURA DE LA VEGETACIÓN NATURAL DEL CENTRO BINACIONAL DE FORMACIÓN TÉCNICA ZAPOTEPAMBA, CANTÓN PALTAS, PROVINCIA DE LOJA

> TESIS DE GRADO PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERA FORESTAL

AUTORA:

Mishelle Jacqueline Chamba Valarezo

DIRECTOR:

Ing. Edwin Pacheco Pineda, Mg.Sc.

Loja-Ecuador 2016

UNIVERSIDAD NACIONAL DE LOJA ÁREA AGROPECUARIA Y DE RECURSOS NATURALES RENOVABLES CARRERA DE INGENIERÍA FORESTAL

CERTIFICACIÓN

En calidad de director de la tesis titulada "COMPOSICIÓN FLORISTICA Y ESTRUCTURA DE LA VEGETACIÓN NATURAL DEL CENTRO BINACIONAL DE FORMACIÓN TÉCNICA ZAPOTEPAMBA, CANTÓN PALTAS, PROVINCIA DE LOJA" de autoría de la señorita egresada de la Carrera de Ingeniería Forestal Mishelle Jacqueline Chamba Valarezo, ha sido dirigida, revisada y aprobada en su integridad; por tal razón autorizó su presentación y publicación.

Loja, 18 de agosto de 2016

Atentamente,

Ing. Edwin Alberto Pacheco Pineda Mg. Sc.

DIRECTOR DE TESIS

UNIVERSIDAD NACIONAL DE LOJA ÁREA AGROPECUARIA Y DE RECURSOS NATURALES RENOVABLES CARRERA DE INGENIERÍA FORESTAL

CERTIFICACIÓN

"COMPOSICIÓN FLORISTICA Y ESTRUCTURA DE LA VEGETACIÓN NATURAL DEL CENTRO BINACIONAL DE FORMACIÓN TÉCNICA ZAPOTEPAMBA, CANTÓN PALTAS, PROVINCIA DE LOJA"

TESIS DE GRADO

Presentada al Tribunal Calificador como requisito parcial para la obtención del título de:

ÍNGENIERA FORESTAL

APROBADA:

lng. Zhofre Aguirre Mendoza, Ph. D.

PRESIDENTE DEL TRIBUNAL CALIFICADOR

Ing. Wilson Quizphe M. Sc.

Ing. Ruth Merino M. Sc

VOCAL

VOCAL

AUTORÍA

Yo, Mishelle Jacqueline Chamba Valarezo, declaró ser autora del presente trabajo de tesis y eximo expresamente a la Universidad Nacional de Loja y a sus representantes jurídicos, de posibles reclamos o acciones legales, por el contenido de la misma.

Adicionalmente acepto y autorizo a la Universidad Nacional de Loja, la publicación de mi tesis en el Repositorio Institucional- Biblioteca Virtual.

Autora: Mishelle Jacqueline Chamba Valarezo

Firma: hoans Alle

Cédula: 1105614638

Fecha: 18 de Agosto de2016

CARTA DE AUTORIZACIÓN DE TESIS POR PARTE DE LA AUTORA PARA LA CONSULTA, REPRODUCCIÓN PARCIAL O TOTAL Y PUBLICACIÓN ELECTRÓNICA DEL TEXTO COMPLETO

Yo, Mishelle Jacqueline Chamba Valarezo, declaró ser la autora, de la tesis titulada "COMPOSICIÓN FLORÍSTICA Y ESTRUCTURA DE LA VEGETACIÓN NATURAL DEL CENTRO BINACIONAL DE FORMACIÓN TÉCNICA ZAPOTEPAMBA, CANTÓN PALTAS, PROVINCIA DE LOJA", como requisito para optar al grado de: Ingeniera Forestal, autorizó al Sistema Bibliotecario de la Universidad Nacional de Loja para que con fines académicos, muestre al mundo la producción intelectual de la Universidad, a través de la visibilidad de su contenido de la siguiente manera en el Repositorio Digital Institucional:

Los usuarios pueden consultar el contenido de este trabajo en el RDI, en las redes de información del país y del exterior, con los cuales tenga convenio la Universidad.

La Universidad Nacional de Loja, no se responsabiliza por el plagio o copia de la tesis que realice un tercero.

Para constancia de esta autorización, en la ciudad de Loja a los 18 días del mes de agosto de 2016. Firma la autora.

Firma.

Autora: Mishelle Jacqueline Chamba Valarezo

Número de cédula: 1105614638

Dirección: Loja; Ciudadela Daniel Álvarez, calles Monte Sinaí y nueva Jerusalén

Correo electrónico: michuja19@gmail.com

Celular: 0959690637

DATOS COMPLEMENTARIOS

Director de Tesis: Ing. Edwin Alberto Pacheco Pineda Mg. Sc.

Tribunal de Grado: Ing. Zhofre Aguirre Mendoza, Ph. D.,

Ing. Wilson Quizphe Mg. Sc.

Ing. Ruth Merino Mg. Sc.

AGRADECIMIENTO

Primeramente quiero agredecer a Dios por haber permitido que culmine con bien una de mis anheladas. Además, quiero dejar constancia de mi sincero agradecimiento a las personas que apoyaron a la ejecución de la presente investigación: Ing. Carlos Díaz Celi, Sr. Juan Celi, Sr. Olger Chamba e Ing. María Yucta.

Deseo manifestar mis más sinceros agradecimientos a todos quienes hicieron posible la culminación de la presente investigación: A la Universidad Nacional de Loja, al Área Agropecuaria y de Recursos Naturales Renovables, a la Carrera de Ingeniería Forestal y a sus docentes, donde adquirí las bases fundamentales y los conocimientos teóricostécnicos para mi formación profesional.

Al Herbario Reinaldo Espinosa por su apoyo científico y a su personal técnico Ing. Celso Yaguana y al Ing. Bolívar Merino por su colaboración incondicional y por su amistad brindada en cada momento del desarrollo de esta investigación.

Al Ing. Edwin Alberto Pacheco Pineda, quien me apoyó en todo momento, con sus sugerencias y recomendaciones para el desarrollo y revisión de este trabajo. Así mismo, mi gratitud a los miembros del tribunal Calificador: Ing. Zhofre Aguirre Mendoza, al Ing. Wilson Quizphe e Ing. Ruth Merino, por su entereza, comentarios y sugerencias para la culminación del trabajo. Finalmente, expreso mis más sinceros agradecimientos a mis familiares, amigos y compañeros de aula, que estuvieron ahí con su apoyo moral y a todas las personas que hicieron posible la culminación del presente trabajo de investigación.

Muchas gracias y que Dios los bendiga...

DEDICATORIA

A Dios, por haberme brindado vida, salud y permitirme haber culminado la formación

académica universitaria. A mis queridos padres María Esthela Valarezo y Franco Chamba

Díaz quienes con esfuerzo y sacrificio me han brindado su apoyo incondicional en mi

formación y permitiéndome lograr este objetivo trazado en mi vida.

A mí querido esposo Ing. Carlos Roberto Díaz Celi que con su amor, paciencia, sacrificio

y estar siempre a mi lado superando cada dificultad que se nos ha presentado. A mi hija

querida Domenica Díaz quien es fuente de superación, mi fortaleza, mi motor, mi todo

que me permite seguir adelante cumpliendo cada una de mis metas.

A mis queridos herman@s, Francisco, Veronica, Jhonn, Evelyn, Jennifer y Cristhofer

quiénes siempre han estado a mi lado dándome su apoyo y sabios consejos. A mis

maestros universitarios quienes a través de sus enseñanzas y consejos supieron guiarme

durante mi formación académica; a mis compañeros de aula, quienes se convirtieron en

mi segunda familia. Y a todos aquellos quienes participaron directa o indirectamente en

la elaboración de esta tesis.

Con cariño...

MISHELLE CHAMBA

vii

ÍNDICE GENERAL

	Contenido	Págin
CERTI	FICACIÓN	II
APROB	SACIÓN	III
	RIA	IV
	DE AUTORIZACIÓN	V
	DECIMIENTO	VI
	ATORIA	VII
_	E GENERAL	VIII
	IEN	XV
	ARY	XVII
1.	INTRODUCCIÓN	1
2.	REVISIÓN DE LITERATURA.	4
2.1.	Bosques Secos	4
2.2.	Importancia de los Bosques Secos.	4
2.3.	Ecosistemas Secos de la Provincia de Loja.	5
2.3.1.	Arbustal desértico del sur de los valles.	5
2.3.2.	Arbustal semideciduo del sur de los valles.	5
2.3.3.	Bosque bajo y arbustal deciduo de tierras bajas del Jama Zapotillo	6
2.3.4.	Bosque deciduo de tierras bajas del Jama Zapotillo	7
2.3.5.	Bosque deciduo montano bajo del Catamayo Alamor	7
2.3.6.	Bosque deciduo piemontano del Catamayo Alamor	8
2.3.7.	Bosque semideciduo montano bajo del Catamayo Alamor	9
2.3.8.	Bosque semideciduo piemontano del Catamayo Alamor	9
2.3.9.	Bosque y arbustal semideciduo del sur de los valles	10
2.4.	Estudios de Vegetación	10
2.4.1.	Composición Floristica.	11
2.4.1.1	Parámetros ecológicos	11
2.5.	Estructura del Bosque.	15
2.5.1.	Estructura diamétrica	15
2.5.2.	Estructura vertical	16
2.5.3.	Estructura horizontal.	16
2.6.	Estudios Similares de Composición Florística y Estructura de la Vegetación	17
	Natrural del Ecosistema Seco.	
3.	METODOLOGÍA	19
3.1.	Ubicación del Área de Estudio.	20
3.2.	Aspectos Biofísicos y Climáticos	21
3.2.1.	Clima	21
3.2.2.	Zona de vida	21
2.2	Metodología para Identificar y Describir los Tipos de Cobertura Vegetal	
3.3.	Natural Existentes en los Predios del CBFTZ del Cantón	
	Paltas	21
3.4.	Metodología para Determinar la Composción Florística y Estructura de la Vegetación de los Remanentes Boscosos del CBFTZ del Cantón	
3.4.	Paltas	22
3.4.1.	Selección del área de estudio	22
3.4.2.	Delimitación e instalación de los transectos temporales en el áre de	
J.T.4.	estudio	23
3.4.3.	Cálculo de los parámetros ecologícos.	25
3.4.4.	Cálculo de los índices de diversidad	26
3.4.4.1	Índice de diversidad de Shannon (H').	26
3.4.4.2	Índice de equitatividad de Shannon (E)	27
3.4.4.3	Índice de dominancia de Simpson (5).	27

3.4.4.4	Îndice de diversidad de Simpson.
3.4.5.	Estructura diamétrica del bosque.
3.4.6.	Perfiles estructurales de vegetación.
3.5.	Metodología para Difundir los Reusltados a los Directivos y Técnicos del CBFTZ, a los estudiantes de la Carrera de Ingeniería Forestal de la Universidad Nacional de Loja y demás Interesados en el Tema
4.	RESULTADOS
4.1.	Identificación y Descripción de los Tipos de Cobertura Vegetal Existentes en los Predios del Centro Binacional de Formación Técnica Zapotepamba del Cantón Paltas
4.2.	Composición Flositica y Estructura de la Vegetación de los Remanentes Boscosos del Centro Binacional de Formación Técnica Zapotepamba del Cantón Paltas
4.2.1.	Composición florística del estrato arbóreo del Centro Binacional de Formación Técnica Zapotepamba
4.2.2.	Composición florística del estrato arbustivo del Centro Binacional de Formación Técnica Zapotepamba
4.2.3.	Composición florística del estrato herbáceo del Centro Binacional del Formación Técnica Zapotepamba
4.3.	Parámetros Estructurales de la Vegetación
4.3.1.	Parámetros Estructurales del Estrato Arbóreo del Centro Binacional de Formación Técnica Zapotepamba
4.3.2.	Parámetros Estructurales del Estrato Arbustivo del Centro Binacional de Formación Técnica Zapotepamba
4.3.3.	Parámetros Estructurales del Estrato Herbáceo del Centro Binacional de Formación Técnica Zapotepamba
4.4.	Índices de Diversidad
4.4.1.	Índice de Shannon (H´) e Índice de equitatividad (E)
4.4.2.	Índice de Simpson
4.5.	Estructura del Bosque Seco del Centro Binacional de Formación Técnica de Zapotepamba
4.5.1.	Parámetros dasométricos de los individuos mayores o iguales a 5cm de DAP
4.5.1.1	Distribución diamétrica del bosque.
4.5.1.2	Área basal y volumen por clase diamétrica
4.5.1.3	Área basal y volumen por especies.
4.6.	Estructura Horizontal y Vertical del Bosque Natural del Centro Binacional de Formación Técnica Zapotepamba
4.6.1.	Perfil horizontal.
4.6.2.	Perfil vertical
4.7.	Difusión de los Resultados a los Directivos y Técnicos del CBFTZ, a los Estudiantes de la Carrera de Ingeniería Forestal de la Universidad Nacional de Loja y de más Interesados en el Tema
5.	DISCUSIÓN
5.1.	Composición Floristica y Diversidad
5.2.	Parámetros Estructurales
5.3.	Perfiles Estructurales de la Vegetación
6.	CONCLUSIONES
7.	RECOMENDACIONES
8.	BIBLIOGRAFÍA
9.	ANEXOS.

ÍNDICE DE FIGURAS

N°	CONTENIDO	Pág
Figura 1.	Ubicación geográfica del área de estudio	20
Figura 2.	Esquema del transecto usado para el registro de datos dentro del	
	remanete boscoso del CBFTZ	24
Figura 3.	Estructura diametrica del bosque.	28
Figura 4.	Diseño para la recolección de datos para elaborar el perfil estructural	29
Figura 5.	Bosque seco intervenido	30
Figura 6.	Matorral seco degradado	30
Figura 7.	Infraestructura del CBFTZ de la Universidad Nacional de Loja	31
Figura 8.	Infraestructura del Reservorio Municipal de Paltas	31
Figura 9.	Cultivos del CBFTZ	32
Figura 10.	Programa caprino del CBFTZ	32
Figura 11.	Mapa de cobertura vegetal del área de estudio	33
Figura 12.	Curva de acumulación de especies	34
Figura 13.	Representación gráfica de las seis familias con el mayor número de	
	individuos en el CBFTZ	35
Figura 14.	Representación gráfica de las seis familias con el mayor número de	
	individuos en el CBFTZ	36
Figura 15.	Representación gráfica de las seis familias con el mayor número de	
	individuos en el CBFTZ	36
Figura 16.	Estructura diamétrica del bosque seco del Centro Binacional de	
	Formación Técnica Zapotepamba	41
Figura 17.	Relación área basal y volumen por clase diámetrica	42
Figura 18.	Área basal de las especies más importantes del bosque seco del Centro	
	Binacional de Formación Técnica Zapotepamba	43
Figura 19.	Volumen de las especies más importantes del bosque seco del Centro	
	Binacional de Formación Técnica Zapotepamba	44
Figura 20.	Perfil horizontal del transecto N° 6 del Centro Binacional de	
	Formación Tecnica Zapotepamba	45
Figura 21.	Perfil vertical del transecto N°6 del Centro Binacional de Formación	
	Técnica Zapotepamba	46
Figura 22.	Exposición a los estudiantes de la CIF	47

ÍNDICE DE CUADROS

\mathbf{N}°	CONTENIDO	Pág.
Cuadro 1.	Hoja de campo para la recolección de datos de los individuos mayores o iguales a 5cm de DAP en Bosque Natural	24
Cuadro 2.	Hoja de campo para la toma de datos: de arbustos y hierbas registrados en Bosque Natural	24
Cuadro 3.	Matriz para la presentación de los parámetros estructurales de la vegetación	25
Cuadro 4.	Matriz para rganizar la información y calcular el índice de Shannon	26
Cuadro 5.	Interpretación de los valores del índice de Shannon	26
Cuadro 6.	Interpretación de los valores de índice de equitatividad de Shannon	27
Cuadro 7.	Interpretación del índice de Simpson	28
Cuadro 8.	Hoja de campo para colectar los datos del perfil horizontal	29
Cuadro 9.	Hoja de campo para colectar los datos del perfil vertical	29
Cuadro 10.	Zonificación del Centro Bincaional de Formcación Técnica Zapotepamba	31
Cuadro 11.	Parámetros estructurales del estrato arbóreo, de las cinco especies eclógicamente más importantes del CBFTZ	34
Cuadro 12.	Parámetros estructurales del estrato arbustivo, de las cinco especies ecológicamente más importantes del CBFTZ	35
Cuadro 13.	Parámetros ecológicos del estrato herbáceo, de las cinco especies ecológicamente más importantes del CBFTZ	36
Cuadro 14.	Valores dasométricos por clase diamétrica del bosque natural seco del CBFTZ	37
Cuadro 15.	Valores dasométricos por especie del bosque natural seco del CBFTZ	39

ÍNDICE DE ANEXOS

ág.
54
72
73
75
76
31
34
35
7 3 3

COMPOSICIÓN FLORÍSTICA Y ESTRUCTURA DE LA VEGETACIÓN NATURAL DEL CENTRO BINACIONAL DE FORMACIÓN TÉCNICA ZAPOTEPAMBA, CANTÓN PALTAS, PROVINCIA DE LOJA

RESUMEN

Los bosques secos del sur del Ecuador son ecosistemas frágiles que han sido muy intervenidos y destruidos, debido a que se encuentran en zonas relativamente pobladas y mantienen una importancia económica para la población rural, suministrando productos maderables y no maderables para su subsistencia. Además, actividades como la ganadería y agricultura que ejercen presión sobre estos ecosistemas, han dado como resultado suelos degradados y erosionados. Es por ello que la integridad de los bosques secos de la provincia de Loja está en peligro, por lo que mantener la cubierta vegetal de estos ecosistemas es una necesidad, ya que éstos han sido declarados "Reserva de Biosfera" desde el 2014, debido a que poseen altos niveles de endemismo, permitiendo que se consideren máxima prioridad regional de conservación.

Es por ello que se planteó realizar está investigación sobre composición florística y estructura de la vegetación natural del Centro Binacional de Formación Técnica de Zapotepamba, permitiendo conocer el crecimiento de las especies del bosque y manejar racionalmente los recursos forestales del sitio de estudio. Esta investigación se ejecutó entre abril a julio del 2015.

En el sitio de estudio se instaló seis transectos temporales de 20 m x 50 m (1 000 m²) separados a una distancia de 100 m entre trasecto, dentro de cada uno se instalaron tres subparcelas en sentido diagonal de 5 m x 5 m (25 m²) para la caracterización del estrato arbustivo, dentro de las cuales se consideró el número de individuos, la frecuencia y la riqueza de las especies, para la caracterización del estrato herbáceo se instalaron cinco subparcelas de 1 m x 1 m (1 m²) a distancias iguales y en dirección diagonal. Además, se utilizaron los datos de toda la vegetación muestreada y de cada zona del CBFTZ para realizar un mapa de cobertura vegetal, en el cual se distinguieron seis tipos de cobertura vegetal: el bosque natural seco que representa el 69 %, el bosque seco intervenido con un 7 %, la infraestructura de la Universidad Nacional de Loja con el 1,5 %, la infraestructura del reservorio municipal de agua con el 1,6 %, cultivos con el 20,7 % y el programa caprino con el 0,1 %.

El área muestreada entre los seis transectos es de 6 505 m², en el cual se registro un total de 283 876 ind/ha, de los cuales 385 son árboles, 13 158 son arbustos y 270 333 son

hierbas. Las familias más representativas de estrato árboreo son: MIMOSACEAE, NYCTAGINACEAE, CAESALPINACEAE, MALVACEAE, COCHLOSPERMACEAE, en el arbustivo son: ASTERACEAE, EUPHORBIACEAE, MALVACEAE, CACTACEAE, LAMIACEAE; y en el herbáceo: ASTERACEAE, ACANTHACEAE, AMARATHACEAE, BORAGINACEAE Y POACEAE. Las especies representativas por su alto valor de IVI, abundancia y frecuencia relativa fueron: *Acacia macracantha*, *Handroanthus chrysanthus*, *Pisonia aculeata*, *Ceiba trichistandra*. y *Senna mollisima*.

Además, se calculó los parámetros estructurales: densidad, densidad relativa, dominancia, dominancia relativa, frecuencia e índice de valor de importancia en base a las fórmulas propuestas por Cerón (1993), Aguirre y Aguirre (1999). Para la estructura del bosque se calculó el área basal y volumen por clases diamétrica. Para los perfiles estructurales se escogió al azar un transecto, en el cual se tomó en cuenta las características sobresalientes de la vegetación; además, se registró la ubicación de los árboles en los ejes X y Y, altura total, diametro de copa y forma del árbol.

El índice de Shannon (arbóreo: 2,33; arbustivo: 2,55 y herbáceo: 3,15) muestra una riqueza de especies media; mientras que Simpson (Arbóreo: 0,15; Arbustivo: 0,14 y Herbáceo: 0,057), indicó una diversidad baja. Estos índices muestran que en el área de estudio, es homogenea en especies.

Y en lo que respecta a la estructura de la vegetación del bosque natural seco, se observó que las dos primeras clases diamétricas (5 a 45 cm de DAP) posee mayor número de individuos. Caracterizando el área de estudio como un bosque seco intervenido en proceso de recuperación, lo que se comprueba al mostrar una tendencia de "J" invertida, esto sugiere que la regeneración es de algún modo deficiente.

De los resultados obtenidos se puede concluir que el bosque natural seco del CBFTZ tiene una diversidad florística media según el índice de Shannon para los tres estratos: arbóreo, arbustivo y herbáceo, que demuestra ser un tipo de bosque ligeramente heterogéneo en abundancia de especies. Mientras que el índice de Simpson muestra que la dominancia de especies es baja. Y finalmente se concluye que la composición florística del CBFTZ está compuesta por: 21 especies de árboles, 22 especies de arbustos y 27 especies de hierbas.

SUMMARY

The dry forests of southern Ecuador are fragile ecosystems that have been seized and destroyed, because they are in relatively populated areas and maintain economic importance for the rural population, providing timber and non-timber for their livelihoods. In addition, activities such as livestock and agriculture that exert great pressure on these ecosystems have resulted in degraded and eroded soils. It is this reality that threatens the integrity of the dry forests of the province of Loja, so keep the vegetation cover of these natural ecosystems has become an urgent need, as these are considered as "Biosphere Reserve" because they have high levels of endemism, allowing considered as a top regional priority for conservation.

That is why we are proposing to carry out an investigation of the floristic composition and structure of the natural vegetation of the Binational Center for Technical Training Zapotepamba, allowing know the growth of forest species and so rationally manage forest resources study site. This research was carried out from April to July 2015.

In the study site six temporary transects of 20 m x 50 m (1 000 m²) spaced at a distance of 100 m between trasecto it was installed inside each had three subplots were installed in sense diagonal of 5 m x 5 m (25 m²) for the characterization of the shrub layer, within which the number of individuals, the frequency and species richness was considered, for the characterization of the herbaceous layer five subplots of 1m x 1m (1 m²) at equal distances were installed and diagonal direction. In addition, data from all sampled vegetation and each area CBFTZ were used to map land cover, in which six types of vegetation were distinguished: dry natural forest accounts for 69%, the operated dry forest with 7%, the infrastructure of the National University of Loja with 1.5%, municipal infrastructure water reservoir with 1.6%, with 20.7% crops and goats program 0.1 %.

The sampled area among the six transects is 6505 m², in which a total of 283,876 ind/ha, of which 385 are trees, shrubs and 13,158 are 270,333 are herbs. The most representative families of arboreal layer are: MIMOSACEAE, NYCTAGINACEAE, CAESALPINACEAE, MALVACEAE, COCHLOSPERMACEAE in the bush are: ASTERACEAE, EUPHORBIACEAE, MALVACEAE, CACTACEAE, LAMIACEAE; and in the herbaceous: ASTERACEAE, ACANTHACEAE, AMARATHACEAE,

BORAGINACEAE and POACEAE. The most representative species for its high value of IVI, abundance and relative frequency were: *Acacia macracantha, Handroanthus chrysanthus, Pisonia aculeata, Ceiba trichistandra and mollisima Senna*.

In addition, the structural parameters were calculated: density, relative density, dominance, relative dominance, frequency and importance value index based on the formulas proposed by Cerón (1993), Aguirre and Aguirre (1999). For forest structure basal area and volume per diameter classes was calculated. For structural profiles it is randomly selected transect, which took into account the outstanding characteristics of vegetation; also the location of the trees in the X and Y, total height, crown diameter and shape of the tree was recorded.

Shannon index (arboreal: 2, 33; shrub: Herbaceous 2.55 and 3.15), shows an average wealth of species; while Simpson (Arboreal: 0.15; Bushy 0.14 and Herbaceous: 0.057), showed us a low diversity. These indices show that in the study area, is homogeneous species.

And with regard to the structure of the natural forest vegetation dry, it was observed that the first two diametric classes (5-45 cm DAP) has a greater number of individuos. Caracterizando the study area as a dry forest intervened in process recovery, attributing it to show a trend of "J" inverted, this suggests that regeneration is deficient in some way.

From the results it can be concluded that the natural dry CBFTZ forest has an average floristic diversity by Shannon index for the three layers: tree, shrub and herbaceous, which proves to be a type of forest slightly heterogeneous in species abundance. While Simpson index shows that the dominance of species is low. And finally it is concluded that the floristic composción the CBFTZ is composed or: 21 species of trees, 22 species of shrubs and 27 species of herbs.

1. INTRODUCCIÓN

Los bosques secos son ecosistemas con alta diversidad biológica, caracterizado principalmente por dos periodos; el lluvioso con una duración de tres a cuatro meses, generalmente en febrero, marzo y abril y precipitaciones de 400 a 800 mm anuales; y, el periodo seco que comprende la mayoría de meses y al menos el 75 % de las especies pierden sus hojas durante esta estación (Aguirre *et al.*, 2014). Se estima que a nivel mundial existen cerca de 62 millones de kilómetros cuadrados de bosque seco, de los cuales el 64,5 % de este tipo de ecosistema están situados en países en vías de desarrollo (Contento, 2000).

En Ecuador los bosques secos se encuentran en el centro y sur de la región occidental de los Andes, en las provincias de Esmeraldas, Manabí, Santa Elena, Guayas, El Oro y Loja. Originalmente cerca del 35 % (28 000 km²) del Ecuador occidental estaba cubierto por bosque seco, se estima que el 50 % habría desaparecido debido a que los mismos se encuentran ubicados en zonas relativamente pobladas, muchas veces en suelos aptos para cultivos y por tal razón han sido intervenidos y degradados mucho más que los bosques húmedos (Aguirre & Kvist, 2005).

En la provincia de Loja, se encuentra la mayor superficie de bosque seco con un 31 %, (3 400 km²), que se desarrolla sobre áreas de fuertes pendientes, suelos pedregosos y arcillosos (Herbario Loja, 2001). Además, en tierras bajas, estribaciones occidentales bajas de la Cordillera de los Andes y los valles secos interandinos del sur (Aguirre y Kvist, 2005). Se puede considerar estos bosques como el "corazón del Centro de Endemismo Tumbesino"; una de las regiones más importantes para la conservación en el mundo y se presenta por la presencia de la corriente cálida de El Niño, la fría de Humboldt, vientos y topografía (López, 2002).

A primera vista los bosques secos del sur-occidente del Ecuador están dominados por especies de la familia MALVACEAE como: Ceiba trichistandra, Cavanillesia platanifolia, Eriotheca ruizii; pero su composición florística es mucho más diversa, encontrándose especies características de otras familias, como: Handroanthus chrysanthus, Cordia lutea, Terminalia valverdae, Machaerium millei, Cochlospermum vitifolium, Bursera graveolens, Coccoloba ruiziana, Caesalpinia glabrata, Piscidia

carthagenensis y cactus como Armatocereus cartwrigthianus y Espostoa lanata (Aguirre et al. 2001).

Los altos niveles de endemismo presentes en este ecosistema, permiten que estos sean considerados como una ecoregion con la prioridad máxima regional de conservación (Ministerio del Ambiente del Ecuador, 2007). Pero en la actualidad se considera que entre el 80 y 90 % de la cobertural vegetal original del bosque seco ha desaparecido (Naturaleza & Cultura 2005), esto es debido a la fragilidad del ecosistema y las presiones de poblaciones aledañas como: el aprovechamiento de productos maderables y no maderables, el pastoreo del ganado caprino y vacuno, los cuales son rubros importantes de la economía campesina (Aguirre & Kvist, 2005). Estas actividades han sido promovidas en su mayoría por políticas estatales y por la apertura de vías de transporte que se dieron a partir de la mitad del siglo veinte (Dodson y Gentry, 1993).

Frente a esta situación para evitar la pérdida de la riqueza natural que ostentan los remanentes boscosos secos del sur del Ecuador y el aumento de la pobreza, es necesario idear planes dirigidos a alcanzar la sostenibilidad, el crecimiento y bienestar de los pueblos. Debido a ello y a la importancia que tienen los bosques secos, se ejecutó la investigación denominada: Composición Florística y Estructura de la Vegetación Natural del Centro Binacional de Formación Técnica Zapotepamba, Cantón Paltas, Provincia de Loja.

La investigación se desarrolló entre abril a julio de 2015, en el bosque seco natural de CBFTZ, ubicada en la parroquia de Casanga del cantón Paltas, provincia de Loja. Para la ejecución del trabajo de investigación, se analizó el sitio de estudio a través de ortofotos y así poder genera el mapa de cobertura vegetal, una vez hecho esto se instaló transectos temporales en sitios estratégicos del área investigada, dentro de los cuales se analizó la composición florística y la estructura de la vegetación natural, y los resultados obtenidos fueron expuestos a los directivos del CBFTZ y a los estudiantes de la carrera de Ingeniería Forestal para poner en conocimiento el estado y composición del bosque natural de uno de los centros de investigación de la Universidad Nacional de Loja.

Los objetivos propuestos para realizar la investigación fueron:

Objetivo General

Contribuir al conocimiento de la composición florística y estructura de la vegetación del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas, con la finalidad de fomentar la investigación.

Objetivos Específicos

- Identificar y describir los tipos de cobertura vegetal natural existentes en los remanentes boscosos del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas.
- Determinar la composición florística y estructura de la vegetación del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas.
- Difundir los resultados a los directivos y técnicos del CBFT-Z, a los estudiantes de la Carrera de Ingeniería Forestal de la Universidad Nacional de Loja y de más interesados en el tema.

2. REVISIÓN DE LITERATURA

2.1. Bosques Secos

Los bosques secos constituyen ecosistemas donde más del 75 % de sus especies vegetales pierden estacionalmente sus hojas. Los factores climáticos y edáficos son los responsables de generar características especiales que los diferencia de otros ecosistemas (Aguirre, 2012). Poseen un clima cálido durante casi todo el año y las temperaturas suelen rondar los 25 y 30 ° C. Las lluvia son un poco abundantes durante el invierno, pero durante el resto del año casi no se registran grandes precipitaciones. En el Ecuador los bosques secos se ubican en el centro y sur de la región occidental de los Andes. Empiezan en el sur de Esmeraldas, continúa en Manabí, Guayas, El Oro, Loja (Aguirre, Kvist y Sánchez, 2005); y en los valles secos de la región interandina, donde la precipitación se distribuye en dos a tres meses y el resto de meses son secos (López, 2001).

Tienen importancia ambiental, social, cultural y económica para varios segmentos de la población urbana y rural que está en constante interacción con ellos, debido básicamente a la cantidad y calidad de productos forestales madereros, productos forestales no madereros y servicios ecosistémicos que ofrecen (Aguirre, 2012).

Estos bosques han sido históricamente intervenidos para utilizar los productos y subproductos como medios de subsistencia y ocasionalmente para el mercado, degradando su estructura, funcionalidad y dinámica. También han sido sometidos a un proceso de deforestación intenso, ganadería caprina intensiva, pastoreo e incendios forestales (Aguirre, 2012).

2.2. Importancia de los bosques secos

La importancia biológica de estos ecosistemas, está dada por la existencia de fauna única, y es por ello que esta región es considerada en el mundo como un EBA (Endemic Bird Área). Además, son bosques restringidos a un área geográfica pequeña (50 000 km², entre Ecuador y Perú) son el hábitat de aproximadamente 500 especies de aves, 84 especies con una distribución muy limitada, de las cuales 15 están amenazadas, donde también viven 10 especies de mamíferos endémicos (Willans, 2005).

Estos ecosistemas no tienen igual capacidad de recuperación que el bosque húmedo, interactúan especialmente con la población rural, logrando reducir las necesidades de

energía, vivienda, además protege las vertientes, cauces de ríos, quebradas y cultivos (López 2001).

2.3. Ecosistemas Secos de la Provincia de Loja

Según el Ministerio del Ambiente MAE (2013), los bosques secos se encuentran distribuidos en tres sectores (Sector Valles, Jama-Zapotillo y Catamayo-Alamor), mismos que están entre la región del Litoral y de los Andes, y dentro de estos se encuentran los siguientes ecosistemas:

2.3.1. Arbustal desértico del sur de los valles

Este ecosistema discontinuo se desarrolla en parches grandes, en laderas escarpadas entre 800 y 1 500 msnm. Este sistema ecológico presenta un bioclima desértico. Su comportamiento estacional es marcado, en temporada de lluvias se torna verde y exuberante de gramíneas, arbustos de *Croton sp., Jatropha curcas* y algunos árboles aislados de *Colicodendron scabridum*. Las plantas alcanzan un dosel de 2 a 3 m de alto (Aguirre, 2013).

Este tipo de ecosistema tiene características típicas que señala Sierra *et al.*, (1999), en cuanto a la formación natural espinar seco montano, en la que se menciona que tiene una distribución restringida, dominada por plantas armadas o espinosas, especialmente de la familia CACTACEAE, pero donde las familias FABACEAE, MIMOSACEAE y ACANTHACEAE pueden ser importantes. Ocurre en áreas secas, con suelos pobres y precipitación aún más escasa que donde se encuentran los matorrales secos. En cambio Holdrige, describe a este ecosistema como una zona de vida Monte Espinoso-Tropical (Me-T) con una vegetación característica: *Cereus, Prosopis, Bursera, Opuntia* (Cañadas, 1983).

2.3.2. Arbustal semideciduo del sur de los valles

Vegetación abierta baja, forma matorrales enmarañados que alcanzan alturas entre 6-8 m, con elementos florísticos espinosos semideciduos, ubicados en laderas montañosas, indistintamente de pendientes fuertes y suaves. En el dosel superior es frecuente *Acacia macracantha* con copas expandidas a menudo cubiertas por bromélias, especialmente *Tillandsia usneoides*. El sotobosque está caracterizado por la presencia de especies arbustivas, poáceas efímeras, plantas suculentas, algunas cactáceas (Aguirre, Medina y Josse, 2013).

La distribución más baja de este ecosistema se encuentra en el valle de Catamayo. En áreas erosionadas y de laderas abruptas con afloramiento de roca madre es común una vegetación espinosa xeromórfica dispersa, son vistosas las rosetas de *Agave americana* y *Furcraea andina*; además, de abundantes colonias que forman montículos de *Puya lanata* de hasta 2,50 m. La altura de las plantas es directamente proporcional a la profundidad de los suelos. Son áreas susceptibles a incendios con el objetivo de obtener rebrotes de pasto para alimentar el ganado. Los suelos son arenosos y pedregosos (Aguirre, Medina y Josse, 2013).

Sierra *et al.*, (1999), menciona al matorral seco montano que corresponde a los valles secos entre 1 400 y 2 500 msnm, dentro del cual se encuentran árboles dispersos y alcanzan máximo 8 a 10 m de altura, con tallos sinuosos, los ríos que atraviesan estos valles dan origen a una vegetación más abundante a su alrededor y a una tierra apta para la agricultura, los valles de Catamayo, Malacatos y Vilcabamba presentan este tipo de vegetación. Según Cañadas (1983), menciona que este ecosistema según las zonas de vida pertenece a la categoría Monte espinoso-premontano (me-PM) con vegetación característica como: *Acacia, Chorisia, Sapindus, Jatropha, Cassia*

2.3.3. Bosque bajo y Arbustal deciduo de tierras bajas del Jama Zapotillo

Ecosistema que comprende el arbustal deciduo frecuentemente espinoso de 4 a 6 m de alto con pocos árboles dispersos que pueden alcanzar de 8 a 10 m. Las familias más importantes por su diversidad o abundancia son FABACEAE, BORAGINACEAE, EUPHORBIACEAE, CAPPARACEAE y CONVOLVULACEAE. Es frecuente observar individuos arbustivos de los géneros *Capparicordis, Colicodendron, Cynophalla, Croton y Euphorbia*. Además, intercalados con la vegetación arbustiva, se observa individuos arbóreos de las especies: *Caesalpinia glabrata, Bursera graveolens y Ceiba trischistandra* (Chinchero, Santiana, Iglesias, 2013). Este ecosistema pertenece a la zona de vida Bosque muy seco – tropical (bms-T) con una vegetación característica: *Ceiba, Prosopis, Tabebuia, Eriotheca, Cavanillesia, Cordia, Loxopterygium*.

Sierra *et al.*, (1999), considera a este ecosistema pertenece a matorral de tierras bajas, el cual ocurre en la cercanía al mar, a altitudes inferiores a los 100 msnm, la vegetación característica por ser seca, achaparrada de hasta 6 metros de altura y espinosa, con notable presencia de cactus columnares.

Cañadas (1983), menciona que este ecosistema según las zonas de vida pertenece a la categoría Monte espinoso-premontano (me-PM) coincidiendo con el ecosistema mencionado anteriormente.

2.3.4. Bosque deciduo de tierras bajas del Jama Zapotillo

Bosques deciduos con un dosel entre 10 y 25 m, con copas expandidas y una ramificación a poca altura del tronco, subdosel de semiabierto ha semicerrado, estrato herbáceo escaso e inexistente en época seca. Este ecosistema se encuentra en planicies aluviales antiguas, desde arenosas hasta arcillosas, en terrenos suavemente colimados o en pendientes inclinadas y base de montaña. Las especies pierden sus hojas durante la estación seca. Está dominado por varias especies de la familia MALVACEAE entre las que se pueden mencionar principalmente a *Ceiba trischistandra*, *Cavanillesia platanifolia y Eriotheca ruizii*, otra familia muy importante en estos bosques es *Fabaceae* (Santiana *et al.*, 2013).

Sierra *et al.*, (1999), este ecosistema se ubica entre las formaciones de matorrales secos de tierras bajas y los bosques semideciduos o húmedos tropicales, en una franja altitudinal entre los 50 y 200 msnm. La vegetación se caracteriza por perder las hojas durante una parte del año. Cañadas (1983), menciona que este ecosistema según las zonas de vida pertenece a la categoría Monte espinoso – premontano (me-PM).

2.3.5. Bosque deciduo montano bajo del Catamayo Alamor

El ecosistema se encuentra en vertientes disectadas del sur de Loja, el paisaje está constituido por árboles aislados que alcanza de 8 a 10 m de altura, junto con un denso estrato arbustivo, además se pueden observan especies de la familia CACTACEAE de los géneros *Armatocereus*, *Cleistocactus*, *Opuntia*, entre otras; las especies que se observan en el dosel son *Ceiba trischistandra*, *Loxopterygium huasango*, *Tabebuia chrysantha*, *Cochlospermum vitifolium* (Iglesias y Chinchero, 2013).

El ecosistema en su límite altitudinal inferior se encuentra adyacente al bosque deciduo piemontano mostrando una composición típica de bosques secos deciduos; sin embargo, en su límite altitudinal superior el ecosistema puede colindar con el bosque siempreverde estacional montano donde es posible encontrar elementos florísticos de ambientes húmedos de los géneros *Myrcianthes*, *Oreopanax*, *Delostoma*, *Cupania* e *Inga* (Iglesias y Chinchero, 2013).

Sierra *et al.*, (1999), este ecosistema comprende los bosques que van de los 1 300 hasta los 1 800 msnm, con un dosel entre 25 a 30 m, en esta faja la vegetación de las mayorías de las especies y familias de árboles de tierras bajas desaparece como BOMBACACEAE, en otros casos, este límite superior de su distribución como MYRISTICACEAE. Cañadas (1983), menciona que este ecosistema según las zonas de vida pertenece a la categoría Monte espinoso – premontano (me-PM).

2.3.6. Bosque deciduo piemontano del Catamayo Alamor

Bosque deciduo de hasta 20 m de alto con árboles emergentes aislados, presenta tres estratos bien diferenciados, el estrato herbáceo principalmente formado por individuos de la familia ACANTHACEAE y ASTERACEAE, mientras que en el estrato arbustivo se puede citar CAPPARACEAE, ASTERACEAE, SOLANACEAE, BORAGINACEAE y EUPHORBIACEAE; las familias más representativas en el estrato arbóreo son FABACEAE, MALVACEAE y BIGNONIACEAE. Este ecosistema se desarrolla en lugares colinados y muy escarpados con suelos bien drenados, entre 400 a 1 600 msnm (Iglesias, Chinchero y Santiana, 2013).

Existen pocos remanentes en buen estado de conservación en el piedemonte del sector biogeográfico Catamayo-Alamor, en la provincia de El Oro y suroccidente de Loja; en la distribución más sur- occidental de este ecosistema (provincia de Loja), la vegetación, tiene una fuerte influencia de las tierras bajas de la región Litoral (Iglesias, Chinchero y Santiana, 2013).

Según Sierra *et al.*, (1999), Este ecositema el estrato arbóreo crece en pendientes muy fuertes con suelos pedregosos, el sotobosque es muy denso y en ocasiones cerrado, se pueden encontrar especies espinosas y algunas plantas que pierden sus hojas en una época del año tales como: *Cochlospermum vitifolium* y *Handroanthus chrysanthus*, se localiza entre los bosques secos deciduos de tierras bajas y los húmedos de la cordillera costera en una franja entre los 100 y 300 msnm. Cañadas (1983), menciona que este ecosistema según las zonas de vida pertenece a la categoría Monte espinoso – premontano (me-PM).

2.3.7. Bosque semideciduo montano bajo del Catamayo Alamor

Bosques estratificados, el dosel alcanza 12 m y los árboles emergentes como *Eriotheca ruizii* pueden llegar a medir 15 m; se observan especies de la familia CACTACEAE y

bajo el dosel crece una densa cobertura arbustiva y herbácea, donde son comunes *Ipomoea carnea, Croton wagneri*, entre otras (Iglesias y Chinchero, 2013).

Aguirre y Kvist (2005) denominan a este ecosistema como vegetación de los Valles secos interandinos del sur; posteriormente Aguirre *et al.*, (2006), lo describe dentro de la unidad de bosque seco. En esta propuesta se lo ha definido como un ecosistema diferente de los que constituyen el sector Valles, si bien florísticamente presentan elementos compartidos, el ecosistema se encuentra en una elevación, bioclima y geoforma diferente; mientras que los ecosistemas del sector de los Valles se encuentran en el ombrotipo desértico, semiárido, seco y en una geoforma de valle tectónico; el ecosistema que aquí se describe, se encuentra en un ombrotipo subhúmedo y en geoforma de serranía (Iglesias y Chinchero, 2013).

Según Sierra *et al.*, (1999), este ecositema comprende bosques que van de los 1 000 hasta los 1 500 msnm, esta vegetación corresponde a una formación transicional entre bosques húmedos y bosques secos del sur, la mayoría de las especies, al igual que las familias de árboles características de tierras bajas desaparecen (MALVACEAE y MYRISTICACE). La zona de vida a la que pertenece este ecosistema es Monte espinoso-premontano (Cañadas, 1983).

2.3.8. Bosque semideciduo piemontano del Catamayo-Alamor

Bosques semideciduos con un dosel que alcanza los 20 m de altura. Este ecosistema representa a los bosques secos estacionales del piedemonte de la Cordillera Occidental. Se caracteriza por la presencia de especies arbóreas, abundantes arbustos y hierbas que en temporada lluviosa crecen sobre laderas con pendientes moderadas de 20 a 30% en suelos muy pedregosos (Aguirre & Kvist 2005). Se distribuyen entre 400 y 1 600 msnm en las provincias de Azuay, El Oro y Loja, debido a esta ubicación altitudinal es un sistema heterogéneo producto del contacto entre las distintas regiones y provincias biogeográficas donde confluyen la flora norandina y el Pacífico Ecuatorial.

El estado de conservación de estos bosques es regular, cuando se altera con incendios y conversión de uso del suelo se pierden muchos elementos originales y el bosque se degrada, indicando que la resiliencia de este ecosistema es baja. Al degradarse el sistema se transforma en un arbustal semideciduo con un dosel entre 5 y 6 m con pocos árboles emergentes remanentes de la vegetación original (Aguirre & Kvist 2005). La fisonomía

arbustiva secundaria se caracteriza por el dominio de *Acacia macracantha* y *Vernonantura patens* (Aguirre y Santiana, 2013).

De acuerdo al sistema de clasificación propuesto por Sierra *et al.*, (1999), este ecositema el estrato arbóreo crece en pendientes muy fuertes con suelos pedregosos, el sotobosque es muy denso y en ocasiones cerrado, se encuentran especies espinosas y algunas plantas que pierden sus hojas en una época del año tales como: *Cochlospermum vitifolium* y *Handroanthus chrysanthus*, se localiza entre los bosques secos deciduos de tierras bajas y los húmedos de la cordillera costera en una franja entre los 100 y 300 msnm.

2.3.9. Bosque y Arbustal semideciduo del sur de los Valles

Bosques con un dosel abierto que alcanza entre 8 y 12 m de alto, el sotobosque con presencia de abundantes arbustos y hierbas de tipo estacional, se encuentran en quebradas, hondonadas, laderas y cimas, sobre suelos pedregosos, ubicados aproximadamente entre 1 200 y 2 200 msnm. A nivel de paisaje la presencia de ceibos (*Ceiba insignis*) e individuos de cactus (*Armatocereus cartwrightianus*) es característica de este ecosistema. Los bosques de estos ecosistemas son usados para agricultura, pastoreo, obtención de materiales de construcción y leña. Los terrenos son muy productivos, especialmente donde existe la influencia de riego (Aguirre y Josse, 2013).

De acuerdo al sistema de clasificación propuesto por Sierra *et al.*, (1999), menciona que este ecositema corresponde a los valles secos entre 1 400 y 2 500 msnm, a lo largo de los ríos que atraviesan estos valles la vegetación es más densa y verde, las tierra es apta para la agricultura.

2.4. Estudios de Vegetación

Los estudios de vegetación permiten identificar y cuantificar la composición florística de las categorías de cobertura vegetal, mediante el uso del método de muestreo por cuadrantes y la aplicación de los parámetros ecológicos. Dichos estudios son importantes principalmente para iniciar trabajos tendientes a manejar los recursos florísticos, "proporcionar información básica sobre usos tradicionales de las plantas, estado de conservación y existencia real de recursos con posibilidades de aprovechamiento" (Aguirre y Aguirre, 1999).

2.4.1. Composición Florística

Se entiende por composición florística a la variedad y variabilidad de especies que están creciendo en un determinado sitio. Según Rosales y Sánchez (2002), la diversidad de la composición Florística en los tópicos se ve influenciada por los siguientes factores:

- Clima, con todas sus manifestaciones de temperatura, viento, humedad ambiental y radiación pues todos estos elementos son manifestaciones de la energía procedente del sol.
- Suelo, se entiende por tal a la parte superficial de la corteza terrestre, biológicamente activa, que proviene de la desintegración o alteración física y química de las rocas y de los residuos de las actividades de seres vivos que se asientan sobre ella. Son muchos los procesos que pueden contribuir a crear un suelo particular, algunos de estos son: la deposición eólica, sedimentación en cursos de agua, meteorización, y deposición de material orgánico.

Además de estos factores existen otros de menor importancia como el número de animales que actúan como agentes dispersantes de las semillas, la composición florística de la vegetación circundante y las características de las especies vegetales disponibles para invadir el área descubierta (Rosales y Sánchez, 2002).

2.4.1.1. Parámetros Ecológicos

Los parámetros ecológicos o técnicos, generalmente recomendados por Cerón (1993), para el estudio de la cobertura vegetal son: densidad, densidad relativa, dominancia relativa, diversidad relativa e índice de valor de importancia.

a) Densidad

Según Cerón (1993), y Aguirre y Aguirre (1999), la densidad (D), está dada por el número de individuos de una especie o de todas las especies divididos por la superficie estudiada. Para el cálculo no es necesario contar todos los individuos de la zona, sino que se puede realizar muestras en áreas representativas. Se calcula con la siguiente fórmula:

 $\mathbf{D} = \frac{\text{N\'umero total de individuos de una especie}}{\text{Total del \'area muestreada}}$

b) Densidad relativa

De acuerdo a Cerón (1993), y; Aguirre y Aguirre (1999), la densidad relativa (DR), permite tener idea de la abundancia (número de individuos de una especie con relación al total de individuos de la población) para calcularla se utiliza la siguiente fórmula:

$$\mathbf{DR} = \frac{\text{N\'umero de individuos por especie}}{\text{N\'umero total de individuos}} \times 100$$

c) Dominancia relativa

Según Cerón (1993), la dominancia relativa (DmR), se define como el porcentaje de biomasa (área basal o superficie horizontal) que aporta una especie. Se expresa por la relación entre el área basal (G = 0,7854 x DAP2) del conjunto de individuos de una especie y el área muestreada. La dominancia de una especie está dada por su biomasa y la abundancia numérica. Se usa para árboles y arbustos (Aguirre y Aguirre, 1999). Se calcula con la siguiente fórmula:

$$DmR = \frac{\text{Área basal de la especie}}{\text{Área basal de todas las especies}} \times 100$$

d) Frecuencia relativa

De acuerdo a Cerón (1993), la frecuencia relativa (FR), permite conocer las veces que se repite una especie en un determinado muestreo (Aguirre y Aguirre 1999). Se calcula utilizando la siguiente fórmula:

$$\mathbf{Fr} = \frac{\text{Número de parcelas donde esta la especie}}{\text{Número total de parcelas muestreadas}} \times 100$$

e) Diversidad relativa de cada familia

Aguirre y Aguirre (1999), indican que la diversidad relativa (DvR), está dada por la heterogeneidad de especies en una determinada área o comunidad biótica. En decir es el número de especies diferentes que se pueden encontrar en una determinada superficie Cerón (1993). Se calcula utilizando la siguiente fórmula:

$$\mathbf{DvR} = \frac{\text{Número de especies por familia}}{\text{Número total de especies}} \times 100$$

f) Índice de valor de importancia

Según Cerón (1993) y Aguirre y Aguirre (1999), el índice de valor de importancia (IVI), indica que tan importante es una especie dentro de la comunidad. Las especies que tienen el IVI más alto significa entre otras cosas que es dominante ecológicamente: que absorbe muchos nutrientes, que ocupa mayor espacio físico, que controla en un porcentaje alto de la energía que llega a este sistema. Para calcular este parámetro se utiliza la DR y la DmR. Se calcula utilizando la siguiente fórmula:

$$IVI = DR + DmR + FR / 3$$

g) Índices de Diversidad

Los índices de diversidad permiten medir la biodiversidad que se manifiesta en la heterogeneidad que se encuentra dentro de un ecosistema (diversidad alfa α) y en la heterogeneidad a nivel geográfico (biodiversidad beta β), de las poblaciones, o de las comunidades ya sea para trabajar, conservar, o para repoblar con una especie que está en vías de desaparecer y que es importante para el desarrollo de la comunidad. No es lo mismo medir la diversidad a escala local que la diversidad a escala regional, o continental, por lo tanto el modelo utilizado consiste en desglosar la diversidad en tres componentes, diversidad alfa o local, diversidad beta o tasa a la que se acumulan nuevas especies en una región y diversidad gamma o globales de una región (Plasencia y Rodríguez, 2007).

h) Índice de equitatividad de Shannon (E)

Si todas las especies en una muestra presentan la misma abundancia el índice usado para medir la Equitatividad debería ser máximo y, por lo tanto, debería decrecer tendiendo a cero a medida que las abundancias relativas se hagan menos equitativas.

$$E = \frac{H'}{H \ max}$$

Dónde:

 $\mathbf{E} = \text{Equitatividad}$

H' =Índice de Shannon

 $\mathbf{H} \mathbf{max} = \mathbf{Ln} \mathbf{del} \mathbf{total} \mathbf{de} \mathbf{especies} (\mathbf{S})$

i) Índice de dominancia de Simpson (δ)

Manifiesta la probabilidad de que dos individuos tomados al azar de una muestra sean de la misma especie. Está fuertemente influido por la importancia de las especies dominantes.

$$\sigma = \sum (Pi)^2$$

Dónde:

 σ = Índice de dominancia

Pi = Proporción de los individuos registrados en cada especie (n/N)

n = Número de individuos de la especie

N = Número total de especies

Entonces el índice de diversidad de Simpson es:

$$\lambda = 1 - \delta$$

Dónde:

 λ = Índice de diversidad de Simpson

 δ = Índice de dominancia

2.5. Estructura del bosque

Según Ramírez y Naranjo (2009), manifiestan que en cada una de las unidades de estudio debe realizarse un levantamiento de la vegetación en superficies de 50 x 10 m, con la finalidad de elaborar diagramas de perfil. En el estudio realizado por Ramírez y Naranjo (2009), desde el punto de vista ecológico, se distingue dentro de la estructura del bosque los estratos: arbóreo, arbustivo y herbáceo. En la práctica forestal se distinguen los estratos: superior, medio, inferior y sotobosque; para determinar estos estratos en los bosques tropicales heterogéneos es difícil debido a la existencia de una gran mezcla de copas.

De acuerdo a Rosales y Sánchez (2002), en la estructura del bosque se distinguen los estratos arbóreo, arbustivo, y herbáceo. El estrato arbóreo está formado por elementos florísticos leñosos con alturas mayores a 5 m, el estrato arbustivo constituido por individuos semileñosos o leñosos con alturas inferiores menores a 5 m; y en el estrato herbáceo alcanzan alturas máximas de 1 m.

2.5.1. Estructura diamétrica

Es la distribución del número de árboles por clase diamétrica, esta distribución como un todo tiene la forma de una "J" invertida; sin embargo estudiando por separado cada especie se observa una gran diversidad de comportamientos que es la mejor forma de entender las distribuciones diametricas o sea, relacionando el número de árboles con el área basal (Caraguay e Hidalgo, 1998; Palacios y Castillo, 1983 citado por Aguirre, 2001).

Morera (2003), demuestra que los bosques plantados, la tendencia de la distribución diamétrica de los individuos mayores a 5 D_{1,30} presentan una tendencia de "J" invertida, característica para los bosques naturales (Lamprecht 1986). Lo anterior descrito refleja la importancia que se le ha dado al manejo de la regeneración natural en combinación con el establecimiento de plantaciones con especies nativas. Es claro que la estructura óptima de un bosque de producción se aleja un poco de lo demostrado por nuestros bosques, pero que en combinación de aspectos ecológicos y productivos, estos bosques tienen un alto valor.

2.5.2. Estructura vertical

Es la forma como se organizan y distribuyen las especies y sus poblaciones entre el dosel del bosque y la superficie del suelo (Melo y Vargas, 2003). Una de las características particulares de los bosques tropicales es el gran número de especies representadas por pocos individuos. Además, con patrones complejos de tipo espacial entre el suelo y el dosel.

Lo anterior sugiere que la evaluación de la estructura vertical se debe conducir de una forma diferente a la que se hace en los bosques de las zonas templadas. En éstas, los ecosistemas boscosos presentan una estructura poblacional inversa a la de los números elevados de individuos, generando estructuras homogéneas con patrones simples de estratificación entre el dosel y el suelo, que frecuentemente presentan tres niveles que

corresponde al estrato arbóreo, estrato arbustivo y estrato herbáceo (Klitgaard B. *et al.*, 1999).

2.5.3. Estructura horizontal

Es la forma como se organizan y distribuyen las especies y sus poblaciones sobre la superficie del bosque (Melo y Vargas, 2003). La estructura horizontal permite evaluar el comportamiento de los árboles individuales y de las especies en la superficie del bosque. Por otro lado, existen modelos matemáticos que expresan la forma como se distribuyen los individuos de una especie en la superficie del bosque, lo que es conocido como patrones de distribución espacial.

Estos generan información sobre la relación de un individuo en particular y sus componentes específicos, la que puede ser empleada para propósitos de manejo y planificación silvicultural (Lamprecht, 1990). La información de campo requerida para la evaluación de la estructura horizontal, se debe capturar sobre la totalidad de la parcela o transecto según el tipo de muestreo, en la cual se evalúan las siguientes variables: Número o código del árbol, nombre del individuo (especie), diámetro normal, coordenada de referencia y el número de la subparcelas donde se encuentra el árbol (Melo y Vargas, 2003).

2.6. Estudios Similares de Composición Florística y Estructura de la Vegetación Natural del Ecosistema Seco

En cuanto a estudios realizados en composición florística y estructura de la vegetación natural en los bosques secos de la región sur del Ecuador, existen los siguientes:

Según Aguirre *et al.*, (2014), en el estudio de Composición Florística, Estructura y Endemismo en una parcela de bosque seco en Zapotillo, Loja Ecuador, se registraron 28 especies de árboles, 8 arbustos, 9 hierbas y 4 epífitas, presentando los árboles un área basal de 26,73 m²/ha y un volumen de 169,41 m³/ha. Dentro de este estudio las familias más diversas son: FABACEAE, MALVACEAE, MIMOSACEAE y CAESALPINACEAE; además, las especies con mayor IVI son *Simira ecuadorensis*, *Handroanthus chrysanthus*, *Ceiba trichistandra y Cordia macrantha*. Y para determinar el perfil estructural se instaló un transecto de 10x100 m, en el cual se demuestra que el estrato superior está representado por *Tabebuia chrysantha*, *Terminalia valverdeae* y *Piscidia carthagenensis*, el estrato codominado por *Bursera graveolens*, *Citharexylum*

quitense y Erythroxylum glaucum, y el estrato suprimido por Simira ecuadorensis y Prockia crucis. Se registraron 13 especies endémicas que son compartidas con Perú. La composición florística y las características estructurales determinan un buen estado de conservación del bosque.

Armijos y Villena (2009) en la investigación Composición Florística y Etnobotánica de la Vegetación Natural del Valle de Casanga de la Provincia de Loja, determinaron diferentes tipos de formaciones vegetales: bosque seco (Bs), bosque seco degradado (Bs-d), matorral seco degradado (Ms-d). Asimismo se identificaron otro tipos de coberturas como: asociación pastizal cultivo (P-c), cultivos mixtos (Cm), sistemas agroforestales (Agro-for), complejo cultivos de temporal-bosque (Cmpl-Temp-b), terreno en barbecho con bosque (Barb-b). Estas formaciones se identificaron bosques monoespecíficos de faique 'Faicales' (F). En cambio en las áreas con características secas-degradadas se encuentran: pasto degradado (Pd), área degradada (A-dg), área erosionada (A-ero). Se registraron 2 726 individuos dentro de los cuales se identificaron 44 familias que contienen 97 géneros y 117 especies, de las cuales 18 son arbóreas, 17 arbustivas, 14 herbáceas y seis enredaderas.

Dentro del valle las familias más diversas son: ASTERACEA con 17 especies, seguido de: ACANTHACEAE, MALVACEAE, POACEAE y SOLANACEAE con seis especies. BORAGINACEAE y FABACEAE con cinco especies, y: AMARANTHACEAE, EUPHORBIACEAE y VERBENACEAE con cuatro especies cada una.

Según Aguirre y Kvist (2005), el estudio denominado Composición Florística y Estado de Conservación de los Bosques Secos del Sur-Occidente del Ecuador, se registró que en los últimos cinco años los bosques secos de Loja (cantones Zapotillo, Macará, Célica, Pindal, Puyango y Sozoranga) se estudiaron con intensidad, con el enfoque de unidades de paisaje. Los resultados demuestran que existen 8 comunidades vegetales dentro de cinco tipos de bosque, donde crecen 219 especies de árboles y arbustos. Se reportan 15 especies endémicas. Además, las familias más de los bosques secos del Sur del Ecuador son: MIMOSACEAE, FABACEAE y CAESALPINACEAE, un aspecto importante que resaltar es que al comparar con las familias dominantes, se determinan que son las mismas familias. Las especies que tienen un alto valor de IVI son: *Ceiba trichistandra, Eriotheca ruizii, Cordia macrantha, Terminalia valverdeae, Handroanthus chrysanthus* y *Gliricidia*

brenningii, las mismas que se reportan como dominantes, por ser propias de las zonas más secas, sin mayores requerimientos de suelo.

Luego de estos estudios se concluye que los bosques secos de la provincia de Loja son los más continuos y están en buen y mejor estado de conservación que sus similares de Manabí, Guayas, El Oro y el norte Peruano.

Otro estudio similar es el realizado por Aguirre, et al. (2001), menciona que la evaluación ecológica rápida de los bosques secos de La Ceiba y Cordillera Arañitas, provincia de Loja, permitió conocer su estado actual de conservación y su composición florística. En las áreas de estudio y sus alrededores se determinó tres tipos de formaciones vegetales: bosques deciduos densos, bosques deciduos ralos (sabanas) y faicales (zona dominada por Acacia macracantha). Los resultados demuestran que estos bosques son más diversos en comparación con otros de características climáticas y edáficas similares. En las parcelas muestreadas en las dos áreas, se identificó 36 especies de árboles y arbustos, algunas de ellas endémicas.

También a través de un inventario general, dentro del cual se registró 109 especies de plantas entre árboles, arbustos, hierbas y epífitas. Las especies más importantes son: *Handroanthus chrysanthus* (BIGNONIACEAE) y *Terminalia ualuerdeae* (COMBRETACEAE). Las familias más diversas son: BIGNONIACEAE, MALVACEAE y COMBRETACEAE.

3. METODOLOGÍA

3.1. Ubicación del Área de Estudio

La investigación se realizó en el Centro Binacional de Formación Técnica Zapotepamba (CBFTZ), de la Universidad Nacional de Loja, mismo que pertenece a la parroquia Casanga, cantón Paltas, provincia de Loja, cuya superficie es de 200 ha. El CBFTZ se ubica entre las coordenadas geográficas: 636 082 O y 9 555 898 S, limita al norte con el barrio Guaypira, al sur con el barrio Zapotepamba, al este con el barrio El Almendral y oeste con el barrio Sabanilla, conforme se ilustra en la Figura 1.

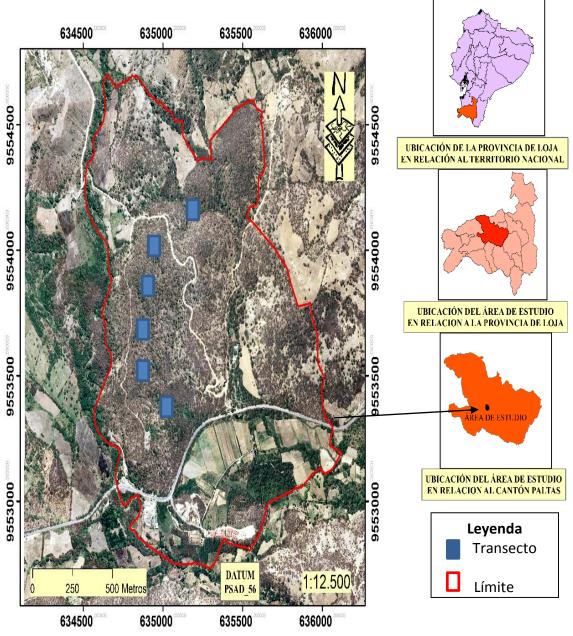


Figura 1. Ubicación Geográfica del Área de Estudio

Fuente: Elaboración Propia, 2015

3.2. Aspectos Biofísicos y Climáticos

3.2.1. Clima

El CBFTZ posee un clima calido seco, una temperatua que oscila entre los 21° a 37°C y con una precipitación de 660mm/año aproximadamente.

3.2.2. Zona de Vida

La zona de vida según Holdridge (1967), el CBFT-Z se clasifica como BsT (Bosque seco tropical). La extensión en la finca es de 202,94 ha, de las cuales 41,99 son potencialmente regables, ubicados en la parte baja de la finca y las 152,56hectáreas son áreas de bosque seco y formaciones naturales de bosque seco y 6,05 ha destinadas para infraestructura educativa y productiva.

3.3. Metodología para Identificar y Describir los Tipos de Cobertura Vegetal Natural Existentes en los Predios del CBFTZ del cantón Paltas

Para la consecución del primer objetivo se procedió a la elaboración de un mapa de cobertura vegetal para disponer de información concreta y actual de los tipos de vegetación natural existente en la zona, este proceso se realizó considerando las siguientes etapas:

Primeramente se recopiló ortofotos del año 2010, mismas que fueron obtenidas en el CINFA (Centro Integrado de Geomántica Ambiental de la Universidad Nacional de Loja), luego se delimitó el área de estudio y dentro de la misma se identificó los diferentes tipos de cobertura vegetal, para ello se utilizó un sistema de información geográfica de software libre y la fotointerpretación dentro del cual se identificó diferentes atributos.

Adicionalmente se realizó la descripción de cada tipo de cobertura vegetal, para lo cual se consideró los siguientes criterios.

- Características de la vegetación: bosque nativo, bosque secundario, pastizales, cultivos (monocultivos y sistemas agroforestales)
- Especies predominantes
- Superficie de los tipos de vegetación y porcentaje con relación al total del área en estudio
- Pendiente del terreno

- Ubicación dentro del área y límites altitudinales
- Red hídrica, poblados y vías de acceso.

Finalmente el mapa fue verificado, actualizado y validado a través de recorridos de campo y tomando puntos GPS, con ello se procedió a la corrección y elaboración del mapa de cobertura vegetal definitivo del CBFTZ.

3.4. Metodología para Determinar la Composición Florística y Estructura de la Vegetación de los Remanentes Boscosos del CBFTZ del cantón Paltas

Para determinar la composición florística de los tipos de cobertura vegetal natural existentes en el CBFT-Z, se tomó en consideración la metodología planteada por Aguirre y Aguirre (1999), mediante la aplicación de transectos.

3.4.1. Selección del área de estudio

Una vez identificados los tipos de cobertura vegetal existentes se procedió a la selección de sitios y delimitación de los transectos en cada uno de los remanentes boscosos, considerando características como accesibilidad, topografía, apreciando la vegetación más representativa de cada uno de ellos.

3.4.2. Delimitación e instalación de los transectos temporales en el área de estudio

El número de unidades a muestrear fueron seis dando una superficie total de muestreo de 6 000 m², que fue comprobado mediante la curva de acumulación de especies, de acuerdo a cada tipo de cobertura vegetal, está grafica permite visualizar la representatividad de un muestreo, para graficar se uso exel y se considero variables como: limite de confianza del 95%, el número de transectos con los cuales se trabajaron y las especies, y cuando la curva tiende a mantenerse horizontal, está indicara que el número de especies se mantendrá aunque aumente el tamaño de muestreo. Para el registro y medición se consideró todos los individuos mayores o iguales a 5 cm de D_{1,30} m. Para la instalación de los transectos temporales se utilizó una brújula, GPS, estacas y piola.

El modelo utilizado para la instalación de los transectos, es una adaptación de otros estudios realizados como el de Aguirre (2001), Quizhpe y Orellana (2011), y Mostacedo (2000), mismos que plantean la utilización de transectos, ya que estos son utilizados por la rapidez con que se mide y por la mayor heterogeneidad con que se muestrea la vegetación.

Los transectos temporales para la presente investigación fueron de 20 m x 50 m (1 000 m²) separados a una distancia de 100 m entre cada uno de ellos, en la delimitación se utilizó cinta plástica; dentro de cada transecto se instalaron tres subparcelas en sentido diagonal de 5 m x 5 m (25 m²) para la caracterización del estrato arbustivo, dentro de las cuales se consideró el número de individuos, la frecuencia y la riqueza de las especies, y para la caracterización del estrato herbáceo se instalaron cinco subparcelas de 1 m x 1 m (1 m²) a distancias iguales y en dirección diagonal, dentro de estas se consideraran los mismos aspectos del estrato arbustivo (ver figura 2).

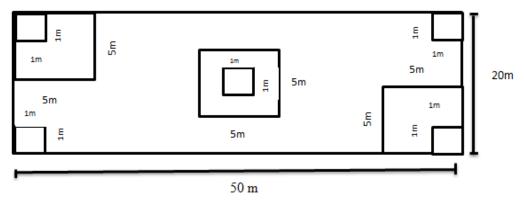


Figura 1. Esquema del transecto usado para el registro de datos dentro del remanente boscoso del CBFT-Z.

Fuente: Quizhpe y Orellana, 2011.

Para el registro de los datos de los individuos en cada sito de muestreo se utilizaron las siguientes matrices:

Cuadro 1. Hoja de campo para la recolección de datos de los individuos mayores o iguales a 5 cm de DAP en Bosque Natural.

	rdenadas M:	• • • • • • • • • • • • • • • • • • • •			Lugar:
N° 7	Transecto:		•••••	•••••	Fecha: Pendiente (%)
Bre	ve	••••	desc	cripción	del
N°	Nombre Vulgar	Nombre Científico	DAP (cm)	Altura total(m)	Observaciones

Cuadro 2. Hoja de campo para la toma de datos: de arbustos y hierbas registrados en Bosque Natural.

Coorden UTM:			Luga	ar:
N° Transecto:		•••••	Fech	a:
Altitud (msnm)		• • • • • • • • • • • • • • • • • • • •	Pend	liente (%)
Breve de	escripción de	l sitio:	•••••	•••••
Código	Nombre Vulgar	Nombre Científico	No de individuos	Observaciones

3.4.3. Cálculo de los parámetros estructurales

Con los datos obtenidos se calculó la densidad absoluta (D), densidad relativa (DR), dominancia relativa (DmR), frecuencia e índice valor importancia (IVI), aplicando las fórmulas planteadas por Aguirre y Aguirre (1999) y Aguirre y Yaguana (2012).

Densidad Absoluta (D)
$$\#ind/m^2 = \frac{No. Total de individuos por especie}{Total del área muestreda}$$

Densidad Relativa (**DR**)% =
$$\frac{\text{No. De individuos por especie}}{\text{No. Total de individuos}} \times 100$$

Dominancia Relativa (DmR)% =
$$\frac{\text{Área basal de la especie}}{\text{Área basal de todas las especies}} \times 100$$

Frecuencia (Fr) =
$$\frac{\text{Número de cuadrantes en que esta la especie}}{\text{Número total de cuadrantes evaluados}} \times 100$$

• Esta fórmula es utilizada específicamente para árboles:

Indice de valor de importancia (IVI)
$$\% = DR + DmR + Fr/3$$

• Esta fórmula es utilizada específicamente en arbustos y hierbas

Indice de valor de importancia (IVI) % = DR + Fr / 2

Para la organización y presentación de los resultados de los parámetros estructurales se utilizó el cuadro 3:

Cuadro 3. Matriz para la presentación de los parámetros estructurales de la vegetación.

Especie	Parcelas	Total Ind.	Área basal	D (Ind/ha)	D R %	DmR	IVI %
	1 2 N						
TOTAL T							

TOTAL

3.4.4. Cálculo de los índices de diversidad

3.4.4.1. Índice de diversidad de Shannon (H´)

Es el índice más usado, expresa la uniformidad de los valores de importancia a través de todas las especies de la muestra, mide el grado promedio de incertidumbre en predecir a que especie pertenecerá un individuo escogido al azar de una colección. Asume que los individuos son seleccionados al azar y que todas las especies de una comunidad están representadas en la muestra.

El índice de Shannon integra dos componentes:

- Riqueza de especies
- Equitatividad /representatividad (dentro del muestreo)

La ecuación utilizada para su cálculo es:

$$H = \sum_{i=1}^{S} (Pi) (\log_2 Pi)$$

Dónde:

H = Índice de la diversidad de la especie

S = Número de especie

Pi = Proporción de la muestra que corresponde a la especie i

Ln = Logaritmo natural

Cuadro 4. Matriz para organizar la información y calcular el índice de Shannon:

Especie	Número Individuos	Pi = n/N	Ln.Pi	Pi * Lnpi
Especie	n			
Total especies	N			

Fuente: Aguirre y Yaguana, 2012

Interpretación

Cuadro 5. Interpretación de los valores del índice de Shannon

Rangos	Significado
0-1,35	Diversidad baja
1,36 -3,5	Diversidad media
Mayor a 3,5	Diversidad alta

Fuente: Cerón, 2003

3.4.4.2. Índice de equitatividad de Pielou (E)

$$E = \frac{H'}{H \text{ max}}$$

Dónde:

E = Equitatividad

H '= Índice de Shannon

 $\mathbf{H} \mathbf{max} = \mathbf{Ln} \ del \ total \ de \ especies (S)$

El significado de diversidad se interpreta en base a la escala entre 0-1 así:

Cuadro 6. Interpretación de los valores del índice de equitatividad de Shannon

Valores	Significancia	
0-0.33	Heterogéneo en abundancia	Diversidad baja
0.34-0.66	Ligeramente heterogéneo en abundancia	Diversidad media
>0.67	Homogéneo en abundancia	Diversidad alta

Fuente: Cerón, 2003

3.4.4.3. Índice de dominancia de Simpson (δ)

Se basa en la probabilidad de que dos individuos tomados al azar correspondan a la misma especie, se calculó utilizando la siguiente fórmula:

$$\sigma = (Pi)^2 \qquad Pi = \frac{n}{N}$$

Dónde:

σ= Índice de Dominancia

Pi= Proporción de individuos de una especie

N=Número total de individuos de todas las especies

n=Número de individuos de la especie

3.4.4.4. Índice de diversidad de Simpson

Se basa en la probabilidad de que dos individuos tomados al azar pertenezcan a especies diferentes, se calculó utilizando la siguiente fórmula:

$$\lambda = 1 - \delta$$

Los resultados se interpretaron usando la siguiente escala de significancia entre 0-1 así:

Cuadro 7. Interpretación del índice de Simpson:

Significancia
Diversidad baja
Diversidad media
Diversidad alta

Fuente: Aguirre y Yaguana, 2012

3.4.5. Estructura diamétrica del bosque

La estructura diamétrica del bosque se determinó en cuanto al número de árboles por hectárea y las clases diametricas, se representó gráficamente conforme se indica en la figura 3.

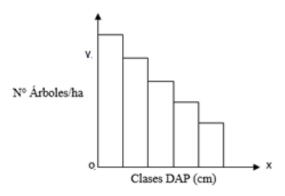


Figura 2. Estructura diamétrica del bosque

3.4.6. Perfiles estructurales de Vegetación

Para conocer la estructura vertical y horizontal del bosque se instaló un transecto de 50 x 20 m, considerando los árboles iguales o mayores a 5 cm de DAP; se trazó un eje en la mitad de la parcela, desde éste se medió la distancia a la que se encuentra cada árbol (0 – 50 m), distancia horizontal y lateral desde el eje (izquierda y derecha), se consideró la altura total de los árboles, forma y diámetro de copa de cada individuo (Aguirre y Yaguana, 2012). Los datos obtenidos se representaron gráficamente a escala en papel milimetrado según recomendación de Mogrovejo y Pardo (2004). El diseño y toma de datos en el transecto se procedió de acuerdo a la figura 4:

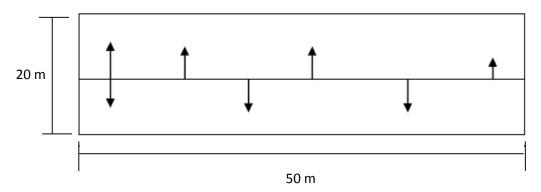


Figura 3. Diseño para la recolección de datos para elaborar el perfil estructural

Para el registro de los datos de los individuos en el sito de muestreo se utilizaron las matrices de los cuadros 8 y 9.

Cuadro 8. Hoja de campo para colectar los datos del Perfil Horizontal

N° Especie en el eje la izquierda la derecha copa (Diámetro de copa)
--

Cuadro 9. Hoja de campo para colectar los datos del Perfil Vertical

del eje del eje	N°	Especie	Distancia en el eje central	a la izquierda	a la derecha	Altura total del árbol	Dibujo de la forma de copa perfil
-----------------	----	---------	-----------------------------------	-------------------	-----------------	---------------------------	---

3.5. Metodología para difundir los resultados a directivos, técnicos del CBFTZ, estudiantes de la carrera de Ingeniería Forestal de la Universidad Nacional de Loja y demás interesados en el tema

Una vez obtenidos y analizadados los resultados del proyecto, se procedió a la difusión de los mismos, tanto a estudiantes como a técnicos del CBFTZ, en dicha presentación se entregó a los participantes un tríptico, también se elaboró un artículo científico para su revisión y difusión futura.

4. RESULTADOS

4.1. Identificación y Descripción de los Tipos de Cobertura Vegetal existentes en los Predios del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas

El CBFTZ se encuentra dentro de una zona con características secas, predominando una topografía relativamente plana en la parte baja y, una pendiente media y fuerte en la parte alta, y de acuerdo a ello el área de estudio presenta dos tipos de cobertura vegetal los cuales son:

• Bosque seco intervenido: Tiene una extensión de 152,56 ha, aquí la cobertura vegetal es muy escasa, debido a la expansión de la frontera agrícola por parte de los habitantes, las especies que sobresalen son: Acacia macracantha (faique), Eriotheca ruizii (Pasallo), Senna mollissima (vainillo), Pisonia aculeta (pega-pega) y Ceiba trichistandra (ceibo) que crecen muy ralas y alcanzan alturas considerables. Este ecosistema arbóreo formado por sucesión natural, cuya cubertura original ha sido alterada por intervención humana y por lo tanto, no se observa continuidad en la vegetación.

El bosque seco del CBFTZ es considerado intervedido ya que a sus alrededores se realizan prácticas agrícolas y estas han ido aumentando, afectando la recuperación del bosque, además la ganadería caprina y vacuna es otro factor que acelera el proceso de la existencia de pequeñas áreas de remanentes boscosos. También se considera a la extracción de leña y de productos forestales no maderables un rubro económico importante para los pobladores de los alredeores, haciendo que el bosque seco del CBFTZ sea caracterizado como un ecosistema secundario en recuperación.

Se encuentra a una altitud entre 800 a 2 200 msnm, presenta tres estratos el superior que esta entre 15 y 20 m y el estrato intermedio con 8 a 15 m de altura y el inferior con alturas de 3 a 5 m (ver figura 5.)

Figura 5. Bosque seco intervenido del CBFTZ

Matorral seco degradado: Ocupa una superficie de 134,42 ha, aquí la cobertura vegetal natural es escasa, se aprecia la tierra de color gris que forma el suelo y algunas especies arbustivas como *Croton wagneri* (mosquera) y *Solanum smithii*. Además se puede identificar ciertas especies arbóreas como: *Acacia macracantha* (faique) y *Senna mollissima* (vainillo). La vegetación de este ecosistema presenta arbustos caducifolios no superiores a los 6 m de alto.

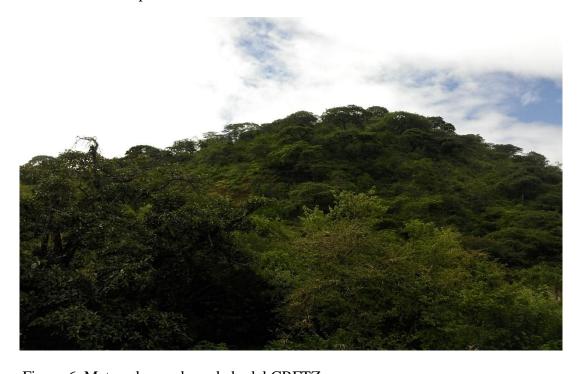


Figura 6. Matorral seco degradado del CBFTZ

Para complementar la descripción de la cobertura vegetal se presenta una breve descripción del uso del suelo del CBFTZ (ver figuras 7, 8 9 y 10):

• Infraestructura del CBFTZ: El área que ocupa es de 5,86 ha, el mismo consta de aulas para los estudiantes de producción agrícola, auditorio para convenciones y exposiciones, dormitorios y un centro administrativo.

Figura 7. Infraestructura del CBFTZ

• Infraestructura del reservorio municipal de agua: Tiene una extension de 0,19 ha, el cual consta del tanque de agua y una pequeña área de administración y monitoreo.

Figura 8. Infraestructura del Reservorio Municipal del CBFTZ

• Cultivos: Ocupa un área de 41,99 ha, por lo general estos se siembran en las partes planas y dentro de estos se puede encontrar cultivos de ciclo corto como: maíz, fréjol, zarandaja, maní y yuca. Y también se encuentra frutales como: mango, naranjas, madarinas, limones, etc. formando sistemas agroforestales tradicionales en la zona.

Figura 9. Cultivos del CBFTZ

• **Programa caprino:** El espacio dedicado para esta actividad tiene una extención de 2,34 ha, dentro del cual se encuentran establos para la crianza del ganado caprino.

Figura 10. Programa Caprino del CBFTZ

La descripción anteriormente realizada se puede corroborar en la figura 11 y cuadro 10:



Figura 11. Mapa de Cobertura Vegetal del Centro Binacional de Formación Técnica Zapotepamba Fuente: Elaboración Propia, 2016

Cuadro 10. Zonificación del Centro Binacional de Formación Técnica de Zapotepamba

Zonificación	Área ha	%
Bosque Seco Intervenido	136,50	67,26
Matorral	16,06	7,91
Infraestructura del CBFTZ	5,86	2,88
Infraestructura del Reservorio Municipal de agua	0,19	0,09
Cultivos	41,99	20,69
Programa Caprino	2,34	1,15
Total	202,94	100

4.2. Composición Florística y Estructura de la Vegetación de los Remanentes Boscosos del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas

En el CBFTZ se muestrearon un total de seis transectos temporales, mismos que fueron suficientes para tener la representatividad, según la curva de acumulación de especies (ver figura 12), estos suman un área muestreada de 6 000 m².

Figura 12. Curva de Acumulación de Especies

Fuente: Elaboración Propia, 2016

La curva de acumulación de especies muestra que el número de transectos muestreados fueron los apropiados, ya que presentan un intervalo de 0,5 %, lo cual permitió obtener un buen número de individuos muestreados.

4.2.1. Composición florística del estrato arbóreo del Centro Binacional de Formación Técnica Zapotepamba

Dentro de los seis transectos temporales instalados en los remanentes boscosos del Centro Binacional de Formación Técnica Zapotepamba se identificaron 23 especies de 20 generos y 18 familias. En la figura 13 se observan las seis familias con mayor diversidad (ver Anexo 1).

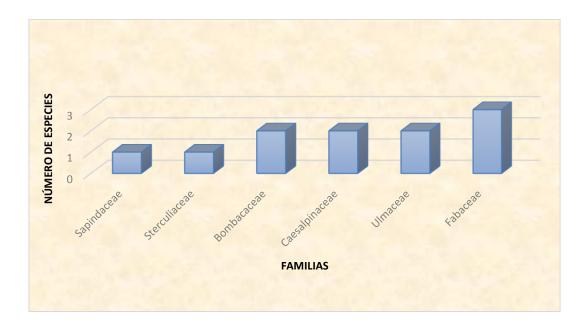


Figura 13. Representación gráfica de las seis familias con el mayor número de especies en el CBFTZ.

4.2.2. Composición florística del estrato arbustivo del Centro Binacional de Formación Técnica Zapotepamba

En el estrato arbustivo del CBFTZ se registraron 22 especies de 30 géneros. En la figura 14 se observan las seis familias con mayor diversidad (ver Anexo 1).

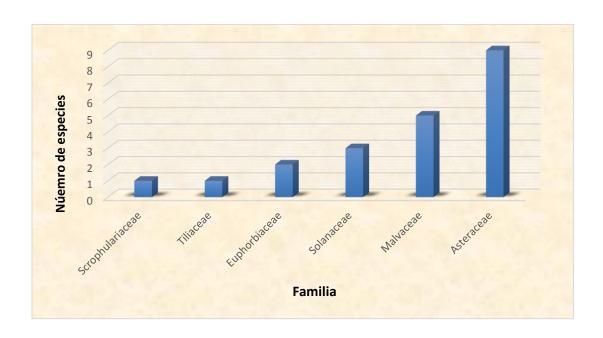


Figura 14. Representación gráfica de las seis familias con el mayor número de especies en el CBFTZ

4.2.3. Composición florística del estrato herbáceo del Centro Binacional de Formación Técnica Zapotepamba

El área muestreada del estrato herbáceo fue de 0,003 ha con total de 270 333 ind/ha, que pertenecen a 27 especies de 33 géneros y 18 familias. Las familias más representativas dentro los transectos herbáceos se pueden observar en la figura 15. En el Anexo 1 se observa el inventario general de hierbas.

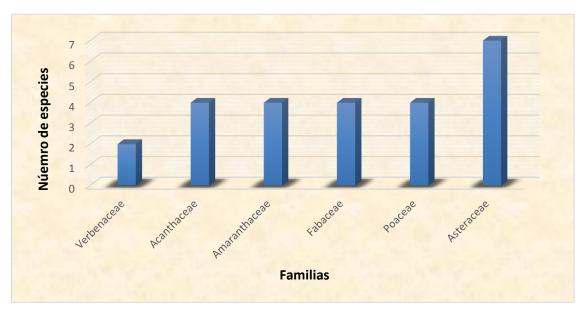


Figura 15. Representación gráfica de las seis familias con el mayor número de especies en el CBFTZ.

4.3. Parámetros Estructurales de la Vegetación

4.3.1. Parámetros Estructurales del Estrato Arbóreo del Centro Binacional de Formación Técnica Zapotepamba

Dentro del estrato arbóreo se identificó un total de 385 ind/ha, de los cuales las especies más sobresalientes son: *Acacia macracantha*, la cual tiene mayor número de individuos por hectárea (117), lo que significa que el remanente boscoso del CBFTZ es un bosque secundario, además se puede decir que esta especie es abundante debido a que el área en estudio es intervenida por los pobladores de los alrededores en actividades para sustentar su hogar. *Pisonia aculeata* con 75 ind/ha también es una de las especies más abundantes debido a que esta especie prefiere suelos ácidos de los bosques secundarios, el vainillo con 45 especies tiene una abundancia de 11, 6 % y una frecuencia de 10,71 %, esta especie también es una de las más abundantes debido a que su semilla es dispersada por medio de la excreta del ganado caprino, es por ello que todas estas especies indican que el sitio es un bosque secundario. Una de las especies con mayor dominancia es el Ceibo (*Ceiba trichistandra*) con un 45 %, esto es debido a que esta especie posee un diámetro mayor a un metro y debido a ello el área basal es mayor, esto hace que sea una de las especies dominantes del bosque seco (ver cuadro 11). El total de las especies arbóreas se detalla en el Anexo 2.

Cuadro 11. Parámetros estructurales del estrato arbóreo, de las cinco especies ecológicamente más iportantes del CBFTZ

Nombre Científico	Densidad ind/ha	Abundancia Dr (%)	FR %	Dmr %	IVI %
Acacia macracantha Humb & Bonpl ex Willd	117	30,30	8,93	16,20	18,48
Ceiba trichistandra (A. Gray) Bakh	5	1,30	3,57	45,35	16,74
Cochlospermun vitifolium (Willd.) Spreng	22	5,63	10,71	3,50	6,61
Eriotheca ruizii (K. Schum.) A. Robyns.	25	6,49	3,57	8,29	6,12
Pisonia aculeata L.	75	19,48	10,71	8,50	12,90
Senna mollisima (Humb & Bonpl ex Willd) H S Irwin & Barnaby	45	11,69	10,71	2,62	8,34

4.3.2. Parámetros Estructurales del Estrato Arbustivo del Centro Binacional de Formación Técnica Zapotepamba

En el cuadro 12 se muestra las especies más representativas del estrato arbustivo del bosque seco del área en estudio, siendo *Croton wagneri* la especie más abundante y dominante con un 31,52 % lo que demuestra que el área de estudio todavía conserva las especies tipicas del bosque seco. Además, esta posee un IVI de 24,09 % lo que argumenta que esta especie es ecológicamente importante para el desarrollo del bosque y del uso que los pobladores le dan. La especie *Lepidaploa canaescens* se coloca en segundo lugar debido a una abundancia de 13,28 % y una frecuencia de 10,42 % y posee un IVI de 11,85 %, a esta le sigue *Chromolaena roseorum*, utilizada en la medicina alternativa, con 1 515,79 ind/ha con una abundancia de 11,52 %, frecuencia de 7,29 % y un IVI de 9,41 % lo que demuestra que es una especie abundante debido a su dispersión. A todas estas especies se suman las especies *Hyptis sidifolia y Tecoma castanifolia* que también tiene un IVI alto, lo que demuestra que estas están entre las cinco especies más frecuentes e importantes ecológicamente del área de estudio. El total de las especies arbustivas se detallan en el Anexo 3.

Cuadro 12. Parámetros Estructurales del Estrato Arbustivo, de las cinco especies ecológicamente más importantes del CBFTZ

Nombre Científico	Densidad ind/ha	Abundancia Dr (%)	FR %	IVI %
Tecoma castanifolia (D. Don.) Melch.	526,32	4,00	2,08	3,04
Hyptis sidifolia (L'Hér.) Briq	568,42	4,32	6,25	5,29
<i>Chromolaena roseorum</i> (B.L. Rob.) R.M. King & H. Rob.	1515,79	11,52	7,29	9,41
Lepidaploa canaescens (Kunth.) H. Rob	1747,37	13,28	10,42	11,85
Croton wagneri Mull. Arg.	4147,37	31,52	16,67	24,09

4.3.3. Parámetros Estructurales del Estrato Herbáceo del Centro Binacional de Formación Técnica Zapotepamba

Dentro de este estrato las cinco especies más abundantes son: *Alternanthera porrigens* (Moradilla) con 32 000 ind/ha misma que tiene una abundancia de 11,83 %, una frecuencia de 8,52 %. En segundo lugar está la especie *Heliotropium indicum* (Rabo de alacrán) con una densidad de 28 333 ind/ha, con una abundancia de 10,48 %, una frecuencia mayor al de la moradilla (11,62 %), lo que significa que esta especie tiene

mayor posibilidades de ser observada con periocidad en el lugar de estudio. Además, cabe recalcar su IVI alto (11,05 %) lo que demuestra que es una especie ecológicamente importante frente a las demás especies, esto debido a su capacidad de reproducción y propagación. Las otras especies como *Dicliptera paposana* tiene 21 333 ind/ha, con una abundancia de 7,89 %, una frecuencia de 6,20 y un IVI de 7,04; mientras que la especie *Milleria quinqueflora* tiene 20 000 ind/ha, una abundacia de 7,39 % con una frecuencia de 4,65 % y un IVI de 6,02 % y por ultimo éntre las especies más sobresalientes en el área de estudio tenemos *Cuphea racemosa* con 16 666 ind/ha, una abundancia de 6,16 %, frecuencia de 1,55 % y un IVI de 3,85 % (ver cuadro 13). El total de las especies herbáceas se detallan en el Anexo 4.

Cuadro 13. Parámetros Ecológicos del Estrato Herbáceo, de las cinco especies ecológicamente más importantes del CBFTZ

Nombre Científico	Densidad ind/ha	Abundancia Dr (%)	FR %	IVI %	
Cuphea racemosa (L.F.) Spreng.	16666,66	6,16	1,55	3,85	
Milleria quinqueflora L.	20000,00	7,39	4,65	6,02	
Dicliptera paposana Phil.	21333,33	7,89	6,20	7,04	
Heliotropium indicum L.	28333,33	10,48	11,62	11,05	
Alternanthera porrigens (Jacq.) Kuntze	32000,00	11,83	8,52	10,18	

4.4.Indices de Diversidad

4.4.1. Índice de Shannon (H) e índice de equitatividad (E)

La diversidad de acuerdo al cálculo del Índice de Shannon (H) para los individuos mayores o iguales a 5 cm de DAP a 1,30 m, tuvo un valor de 2,32, lo que demuestra que la diversidad del bosque del CBFTZ es media. Además, el índice de equitatividad de Shannon (E) muestra un valor de 0,75, que significa que la vegetación presenta homogeneidad en la distribución de la diversidad (ver Anexo 5).

Para el estrato arbustivo se obtuvo un valor de 2, 55 que indica que la diversidad es media y en el cálculo de la equitatividad se demostró que la vegetación es homogénea con un valor de 0,75. Para el estrato herbáceo de igual manera se puede observar una diversidad media, con una vegetación homogénea dentro de toda el área de estudio con valores de H igual a 3, 14 y E con un valor de 0,86.

4.4.2. Índice de Simpson

La diversidad según Simpson en el bosque seco del CBFTZ es baja, el estrato arbóreo presenta un valor de 0,15; el estrato arbustivo con un valor de 0,14 y en el estrato herbáceo se tuvo 0,05, estos valores se obtuvieron debido a que en este lugar hay especies dominantes como *Eriotheca ruizii* y *Ceiba trichistandra* poseen un diámetro superior a 30 cm, lo que hace que este índice muestre que el área en estudio sea poco diversa, debido a que este índice representa la probabilidad de que dos individuos dentro de un habitát seleccionados al azar, pertenezcan a la misma especie. En el Anexo 6, se puede observar los cálculos de este índice en los tres estratos.

4.5. Estructura del Boque Seco del CBFTZ

4.5.1. Párametros dasométricos de los individuos mayores o iguales a 5 cm de DAP4.5.1.1. Distribución diamétrica del bosque

En el cuadro 14 se presenta el número de árboles, área basal y volunen por hectárea de acuerdo a las 10 clases diamétricas; DAP (m) y alturas promedio, y el factor de forma utilizado en los cálculos volumétricos.

Cuadro 14. Valores dasométricos por clase diamétrica del bosque natural seco del Centro Binacional de Formación Técnica Zapotepamba

N° de clases	Clases diamétricas (cm)	N° Ind	DAP (m) Promedio	HT promedio	Área basal Promedio	f	Vol m ³ promedio
1	5,00-25,00	158	0,15	6,21	0,02	0,37	0,05
2	25,10-45,18	62	0,32	8,22	0,08	0,37	0,25
3	45,19-65,27	8	0,53	9,86	0,22	0,37	0,82
4	65,28-85,36	0	0,00	0,00	0,00	0,37	0,00
5	85,37-105,45	0	0,00	0,00	0,00	0,37	0,00
6	105,46-125,54	0	0,00	0,00	0,00	0,37	0,00
7	125,55-145,63	0	0,00	0,00	0,00	0,37	0,00
8	145,64-165,72	1	1,47	13,00	1,70	0,37	8,16
9	165,73-185,81	0	0,00	0,00	0,00	0,37	0,00
10	185,82-210,90	2	2,05	16,00	3,30	0,37	19,49
		231			5,32		28,77

f=Factor de forma; HT= Altura total; DAP= Diametro a la altura del pecho

En el bosque seco del Centro Binacional de Formación Técnica Zapotepamba se registrarón 231 individuos/ha arbóreos iguales o mayores a 5cm de DAP, de los cuales 158 pertenecen a la clase diamétrica uno, lo que representa el 68,40 % de todos los individuos evaluados, 62 individuos pertenecen a la segunda clase representando el 26,84 %, 8 individuos se registran en la tercera clase diamétrica con 3,46 %; 1 individuo en la clase ocho que corresponde a 0,43 % y 2 en la clase diamétrica diez correspondiente al 0,87 % del total de los individuos registrados. Sien embargo en las clases cuatro, cinco, seis, siete y nueve no se registraron individuos.

En la figura 16, se observa que las dos primeras clases diamétricas son las más abundantes y contiene individuos de hasta 45,18 cm de DAP, lo que permite aseverar que es un bosque en recuperación con árboles jóvenes y delgados, esta característica hace que la distribución diamétrica tenga la forma de una "J" invertida.

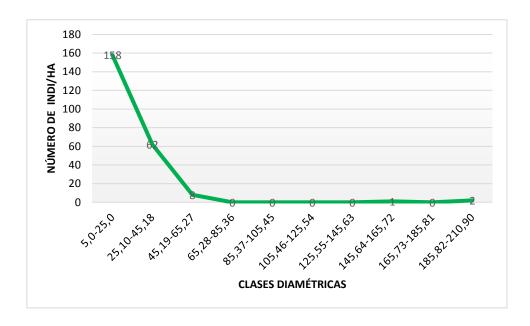


Figura 16. Estructura diamétrica del bosque seco del Centro Binacional de Formación Técnica Zapotepamba

4.5.1.2. Área basal y volumen por clase diamétrica

En la figura 17 se indica el volumen y el área basal por cada clase diamétrica del bosque seco del Centro Binacional de Formación Técnica Zapotepamba

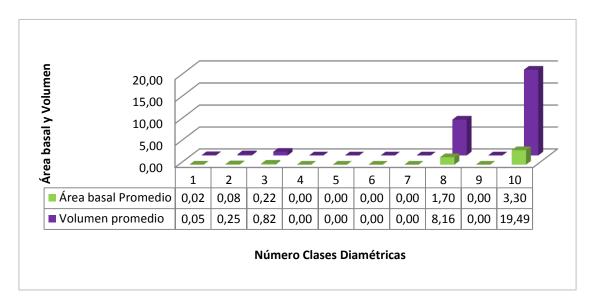


Figura 17. Relación área basal y volumen por clase diamétrica

El área basal y volumen mayor corresponde a la clase diez con 3,30 m² y 19,49 m³ respectivamente, el área basal y volumen total de las clases unos, dos, y tres disminuyen mientras que en la clase ocho tienden a subir, esto se debe a que existen menor número de individuos pero con diámetros y alturas mayores.

4.5.1.3. Área basal y volumen por especies

El número de individuos, área basal y volumen total de las 10 especies más importantes del bosque seco del Centro Binacional de Formación Técnica Zapotepamba, se presenta en el cuadro 15 y el total en el Anexo 7.

Cuadro 15. Valores dasométricos por especie del bosque natural seco del Centro Binacional de Formación Técnica Zapotepamba

Especie	G m ²	Vol m ³	Número Ind
Ceiba trichistandra (A. Gray) Bakh	8,30	47,15	3
Acacia macracantha Humb & Bonpl ex Willd	2,97	8,65	70
Eriotheca ruizii (K. Schum.) A. Robyns.	1,52	5,20	15
Pisonia aculeata L.	1,56	3,46	45
Erythrina velutina Willd.	0,52	2,15	5
Albizia multiflora (Kunth) Barneby & J.W. Grimes	0,56	1,97	8
Cochlospermun vitifolium (Willd.) Spreng	0,64	1,66	13
Guazuma ulmifolia Lam.	0,50	1,54	6
Celtis loxensis C.C.Berg	0,43	1,19	9
Loxopterygium huasango Spruce ex Engl.	0,25	1,10	4
Total	18,31	77,05	231

Ceiba trichistandra posee mayor área basal y volumen con 8,30 m² y 47,15 m³ respectivamente, esto se debe a que posee diamétros y alturas grandes; seguido por *Acacia macracantha* la cual posee 2,97 m² de área basal y 8,65 m³ de volumen esto se debe a que posee el mayor número de individuos, otras especies por su abundancia dan valores considerables de área basal y volumen, tal es el caso de *Eriotheca ruizii*, *Pisonia aculeata*, *Erythrina velutina* y *Albizia multiflora*.

En las figuras 18 y 19 se observan las especies con mayor área basal y volumen del bosque seco del Centro Binacional de Formación Técnica Zapotepamba

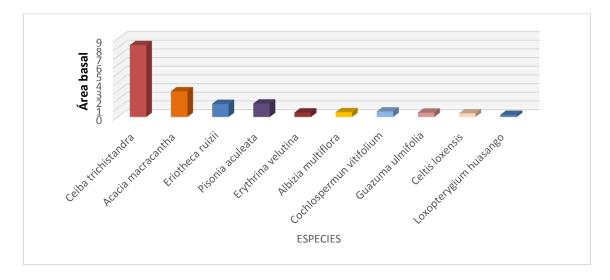


Figura 18. Área bsal de las especies más importantes de bosque seco del Centro Binacional de Formación Técnica Zapotepamba

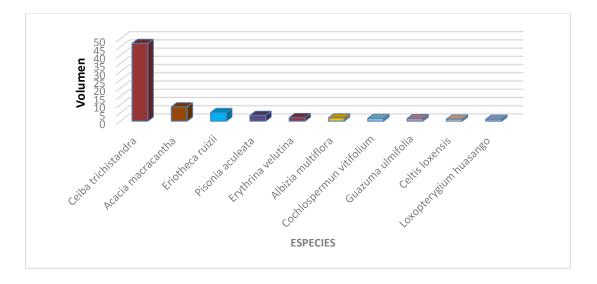


Figura 19. Volumen de las especies más importantes de bosque seco del Centro Binacional de Formación Técnica Zapotepamba

4.6. Estructura Horizontal y Vertical del Bosque Natural del Centro Binacional de Formación Técnica Zapotepamba

Se determinó un total de 45 individuos (> 5 cm DAP) dentro del área de muestreo seleccionada para el análisis de los perfiles estructurales.

4.6.1. Perfil horizontal

En la figura 20, se observa un bosque de copas pequeñas y muy irregulares, pero a pesar de ello se pueden observar ciertas especies que poseen copas muy anchas y frondosas, como en el caso de: *Ceiba trichistandr*, *Terminalia valverdae*, *Fulcaldea laurifolia y Eriotheca ruizii*.

En algunos casos los árboles de dosel alto alcanzan diámetros mayores a 15 cm, existiendo un entrecruzamiento entre copas, por el agrupamiento de ciertas especies, pero esto no significa que la cobertura dentro del bosque represente abundancia en especies.

La baja densidad y la dispersión de los individuos en el área de muestreo, evidencian la presencia de claros en el bosque, los cuales son el resultado de procesos de intervención antrópica en épocas anteriores.

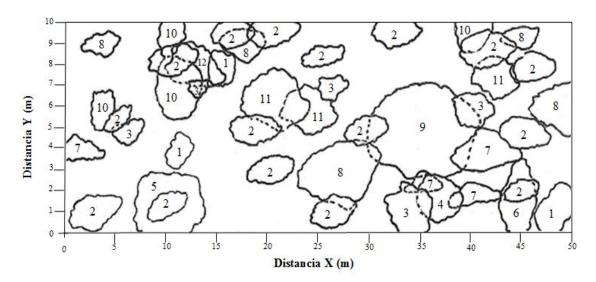


Figura 20. Perfil Horizontal del Transecto N°6 del CBFTZ

1. Eriotheca ruizii; 2. Pisonia aculeata; 3. Celtis loxensis; 4. Zanthoxylum culantrillo; 5. Fulcaldea laurifolia; 6. Senna mollisima; 7. Acacia macracantha; 8. Acacia macracantha; 9. Ceiba trichistandra; 10. Cochlospermun vitifolium; 11. Terminalia valverdae; 12. Erythrina velutina.

4.6.2. Perfil vertical

La figura 21 representa la estructura vertical del bosque seco del CBFTZ. Se distinguen tres estratos: árboles dominantes con alturas de 9 a 15 m, en el cual se registraron 9 individuos, las especies con mayor altura son: *Ceiba trichistandra, Eriotheca ruizii* y *Geoffroea spinosa*.

En el segundo estrato los árboles codominantes comprendidos entre 6 a 8 m de altura, estas especies son: Senna mollisima, Pisonia aculeata, Fulcaldea laurifolia, Terminalia valverdae, Celtis loxensis y Acacia macracantha, en el tercer estrato los árboles dominados o suprimidos con las alturas entre 3 a 5 m con especies como: Erythrina velutina y Zanthoxylum culantrillo.

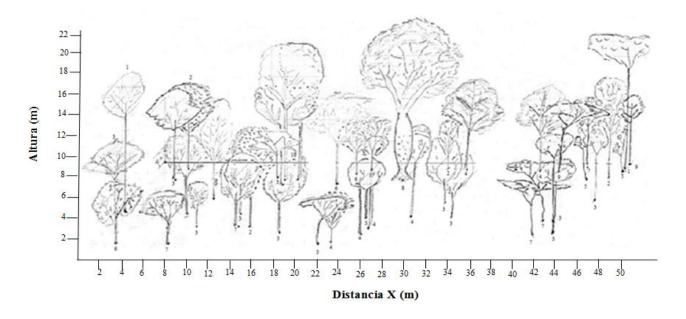


Figura 21. Perfil Vertical del Transecto N°6 del CBFTZ

1. Eriotheca ruizii; 2. Celtis loxensis; 3. Pisonia aculeata; 4. Cochlospermun vitifolium; 5. Erythrina velutina; 6. Senna mollisima; 7. Acacia macracantha; 8. Ceiba trichistandra; 9. Terminalia valverdae; 10. Geoffroea spinosa.

4.7. Difusión de los Resultados a los Directivos y Técnicos del CBFTZ, a los Estudiantes de la Carrera de Ingenieria Forestal (CIF) de la Universidad Nacional de Loja y más Interesados en el Tema

Se realizo la socialización de los resultados de la investigación denominada: Composición Floristica y Estructura de la Cobertura Vegetal Natural del CBFTZ, a travez de una exposición a los técnicos del Centro Binacional de Formación Técnica Zapotepamba y a los estudiantes de la carrera de Ingenieria Forestal (Figura 22), en la cual se entregó un tríptico con la finalidad de dar a conocer el presente estudio (Anexo 8), y finalmente se redacto un articulo científico.

Figura 22. Exposición a Estudiantes de la CIF

5. DISCUSIÓN

5.1. Composición Florística y Diversidad

En la investigación realizada en el bosque seco Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas, el sitio se encuentra representado florísticamente por un total de 1 667 individuos, que corresponden a 231 árboles con diámetros mayores a 5 cm de D_{1,30} m, 625 arbustos y 811 hierbas, lo que permite comparar con el estudio realizado por Armijos y Villena (2009), quienes registraron dentro del valle de Casanga un total de 2 726 individuos de los cuales 308 son árboles, 891 arbustos y 1 135 hierbas. Cabe recalcar que el estudio de los autores mencionados anteriormente fue realizado en todo el valle de casanga y la presente investigación esta enfocada a una extención de la Universidad Nacional de Loja.

Los datos demuestran que la diversidad es menor con 21 especies arbóreas incluidos en 20 géneros y 18 familias, comparando con estudios realizados en el bosque seco de la Reserva La Ceiba por Buri (2011) que reconoció 28 especies de árboles en 28 géneros y 19 familias; mientras que Granda y Guamán (2006) contabilizaron 33 especies de árboles en 32 géneros y 21 familias y, Bustamante (2009) registró 68 especies, de las cuales, 24 especies son arbóreas dentro de 24 géneros en 17 familias. Si se compara estos cuatro estudios realizados en los bosques secos del sur occidente de la provincia de Loja se puede establecer que son ecosistemas similares o parecidos en su composición florística.

Las familias más representativas que se registraron en el bosque seco del CBFTZ fueron: FABACEAE, ULMACEAE, CAESALPINACEAE, MALVACEAE, STERCULIACEAE y SAPINDACEAE, datos que son similares con lo manifestado por Aguirre y Kvist (2005), quienes indican que las familias más dominantes y representativas del bosque seco son: FABACEAE, MIMOSACEAE, MORACEAE y MALVACEAE; además, lo corroboran estudios de Gentry (1995), Aguirre *el al.* (2001), Granda y Guamán (2006) quienes también consideran a las LEGUMINOSAS Y MALVACEAE, como el grupo de las familias más representativas del bosque seco. Todas estas familias son similares debido a que pertenencen a un ecosistema determinado "Bosque Seco" y la altitud a nivel del mar a la que se encuentran están en rangos similares de 300 a 1 500 msnm.

En la Zona de estudio la riqueza que indica el índice de Shannon (arbóreo: 2,3279; arbustivo: 2,5550 y herbáceo: 3,1494) medio, debido a que a través de este índice se muestra el número de especies presentes y su abundancia relativa. Esto es, si una comunidad de "S" especies es muy homgénea, por ejemplo porque existe una especie claramente dominante y las restantes S-1 especies apenas presentes, el grado de incertidumbre será más bajo que si todas las S especies fueran igualmente abundantes. El índice de Simpson muestra (arbóreo: 0,15; arbustivo: 0,14 y herbáceo: 0,057), una diversidad baja, debido a que este se basa en la probabilidad de que dos individuos tomados al azar pertenezcan a especies diferentes. Estos índices muestran que en el área de estudio, presenta homogeneidad de especies, debido a que el bosque esta en recuperación y la distribución de especies presenta claros esto viene atribuido con la ganadería caprina y a la agricultura realizada por la comunida, resultados que permiten comparar con el estudio de Armijos y Villena (2009), quienes indican que los índices de Shannon (3,8713) muestran una diversidad media y una homogeneidad en especies y el mismo valor demuestra Simpson con (0,97), que representa a una dominancia alta.

5.2. Parámetros Estructurales

En el bosque seco del CBFTZ, las especies más representativas por su alto valor ecológico de importancia, abundancia y frecuencia relativa fueron: Acacia macracantha, Ceiba trichistandra, Pisonia aculeata y Senna mollisima, a excepción de Ceiba, que es una especie que domina por su área basal, lo que coincide con lo manifestado por Montaño y Roa (2012), quienes encontraron en su estudio en el bosque seco del sur occidente de la provincia de Loja que las especies sobresalientes fueron: Acacia macracantha, Eriotheca ruizii, Erythrina velutina, Ceiba trichistandra y Handroanthus chrysanthus; además, de lo manifestado por Guamán (2006) quien confirma las mismas especies como dominantes del bosque seco. Por otra parte Aguirre y Kvist (2005), quienes manifiestan que las especies más representativas del bosque seco son: Ceiba trichistandra, Eriotheca ruizii, Cordia macrantha, Terminalia valverdeae, Handroanthus chrysanthus y Gliricidia brenningii; el estudio de Aguirre y Delgado (2005), afirman que Ceiba trichistandra tiene mayor importancia y dominancia en los bosques secos del Ecuador y Perú, en comparación con otros bosques secos del Ecuador.

Vázquez, Freire y Suarez (2005), en su estudio mencionan que el hecho de que la frecuencia más alta de especies en la zona esté compuesta por individuos entre 5 a 40 cm

de DAP, sugiere que los bosques estudiados posiblemente están en proceso de recuperación, lo que se sustenta con los resultados obtenidos en la presente investigación, ya que los diámetros registrados de los individuos arbóreos están entre 5 a 60 cm de DAP, lo que indica que este tipo de bosque está en proceso de recuperación, ya que por la cercanía de ciertos poblados este ha sido intervenido por pastoreo y extracción de leña para sustento familiar.

En lo que respecta a la estructura del bosque seco del Centro Binacional de Formación Técnica Zapotepamba, presenta un mayor número de individuos en las dos primeras clases diamétricas con diamétros entre 5 a 45 cm de DAP. Estas características indican que se trata de un bosque joven secundario y de individuos delgados y pocos se encuentran en plena madurez, es decir que el bosque se encuentra en recuperación, lo que se atribuye a la tala selectiva de especies economicamnete importantes y al pastoreo extensivo de ganado y sobre todo al caprino, lo que hace que esta particularidad tenga un "J" invertida. Dsitribución que se corrobora con la obtenida por Morales (2002), en su estudio realizado en el cantón Macará.

Además, Lamprecht (1990) indica que la distribución diamétrica en bosques jóvenes y en recuperación presentan una tendencia de "J" invertida, lo que permite ratificar los resultados obtenidos en el bosque seco del CBFTZ, representando a un bosque discetáneo donde las especies se encuentran distribuidos en varias clases de tamaño, considerando la distribución en forma de "J" invertida, esto es característico de bosques intervenidos y no intervenidos, así como los secundarios maduros, presentan estructuras discetáneas, aunque en muchos casos incompleta (Centro Agronómico Tropical de Investigación y Enseñanza, CATIE, 2001). Además, la tendencia inversa o negativa sugiere que la regeneración es de algún modo deficiente.

5.3. Perfiles estructurales de la vegetación

En el perfil vertical del bosque seco del centro Binacional de Formación Técnica Zapotepamba, los estratos diferenciados fueron: el estrato superior o **dominante** considera individuos que alcanzan altura entre 9 a 15 m, en los cuales sobresalen: *Senna mollisima, Pisonia aculeata, Ceiba tichistandra, Guazuma ulmifolia, Eriotheca ruizii, Geofroea spinosa y Acacia macracantha;* en el estrato medio o **codominante** con alturas de 6 a 8 m, sobresalen: *Terminalia valverdade, Cochlospermun vitifolium, Celtis loxensis*

y Fulcaldea laurifolia; y en el estrato suprimido o dominado con altura entre 3 a 5 m, se encuentran: Erythrina velutina y Zanthoxylum culantrillo, el área de estudio posee más árboles codominantes que dominantes, esto es debido a que el proceso de restauración del lugar es lento y largo, resultados que permiten diferir con lo manifestado por Aguirre et al, (2013), quienes en su estudio identificaron tres estratos, en el estrato arbóreo, existen tres subestratos: dominante sobresalen Ceiba trichistandra y Eriotheca ruizii, Tabebuia chrysantha, Cochlospermun vitifoliun, codominante está constituido por Geoffroea spinosa, Bursera graveolens, Guazuma ulmifolia y dominado se encuentran: Simira ecuadorensis, Prockia crucis, Pithecellobium excelsum, Ipomoea pauciflora y Achatocarpus pubescens. Esto es debido a que el lugar de estudio es un bosque que ha sido cuidado por los habitantes de los alrededores y esta en un proceso de pasar de un bosque secundario a un bosque climax.

En el perfil horizontal del bosque seco Centro Binacional de Formación Técnica Zapotepamba, se pudo observar copas pequeñas y muy irregulares, además, ciertas especies poseen copas muy anchas y frondosas tales como: *Ceiba trichistandr*, *Terminalia valverdae*, *Fulcaldea laurifolia y Eriotheca ruizii*; y, árboles de dosel alto que alcanzan diámetros mayores de hasta 15 cm de diámetro; estudio que permiten corroborar con los resultados mencionados por Aguirre *et al*, (2013), quienes mencionan que los bosques secos de la provincia de Loja se encentran representados por las especies ecológicamente importantes (IVI) son: *Ceiba tichistandra*, *Simira ecuadorensis*, *Handroanthus chrysanthus*, *Eriotheca ruizii* y *Terminalia valverdeae*, lo que indica que el bosque conserva su estructura original, donde los cinco elementos florísticos nombrados son los típicos y característicos del bosque.

Sin embargo se constató la presencia de claros en el bosque, originados por la tala selectiva de especies de valor comercial y a la caída de árboles por vejez, lo cual se corrobora con lo mencionado por Quinto *et al*, (2009), quienes manifiestan que los claros en el bosque se originan principalmente por la intensidad de mortalidad que es de carácter intermedio.

6. CONCLUSIONES

- La diversidad florística del CBFTZ es de 70 especies, de las cuales 21 son leñosas mayores o iguales a 5 cm de DAP, 22 arbustos y 27 hierbas.
- Las familias más diversas fueron: en el estrato arbóreo FABACEAE y ULMACEAE, en el estrato arbustivo ASTERACEAE Y MALVACEAE y en el estrato herbáceo ASTERACEAE y POACEAE.
- Las especies ecológicamente más importantes fueron: *Acacia macracantha*, *Ceiba trichistandra*, *Pisonia aculeata* y *Senna mollisima*.
- El bosque en estudio posee una diversidad media para los tres estratos de vegetación a diferencia del índice de Simpson que registró una diversidad baja para los tres estratos, valores se ven reflejados por el estado actual de conservación del bosque.
- La estructura diamétrica del bosque seco, presenta una tendencia de "J" invertida la cual es característica de los bosques jovenes en proceso de recuperación es decir en bosques multietáneos.
- El área basal de las especies leñosas del CBFTZ es 18,32 m²/ha y el volumen es 77,06 m³/ha; las especies que más aportan son: *Ceiba trichistandra*, *Acacia macracantha*, *Eriotheca ruizii* y *Pisonia aculeata*.
- La estructura vertical del bosque seco del CBFTZ permite diferenciar tres estratos: dominante, codominado y suprimido, las especies *Cochlospermum vitifolium*, *Eriotheca ruizii*, *Ceiba trichistandra*, *Terminalia valverdae* y *Handroanthus chrysanthus* son las que dominan el estrato superior.

7. RECOMENDACIONES

- Realizar estudios en el bosque seco sobre dinámica poblacional con el fin de conocer el comportamiento de las especies de estos ecosistemas que contribuyan a su manejo.
- Definir estrategias que permitan involucrar a los moradores de la zona, como una alternativa de producción con ingreso inmediato a través del manejo y aprovechamiento sustentable de los recursos naturales existentes dentro y fuera del bosque.
- Impulsar investigaciones en el bosque seco del CBFTZ para disponer de información básica de distribución, reproducción y fenología sobre las especies, esto servirá para reforestar áreas degradas y aumentar las áreas boscosas.
- Realizar estudios para conocer el potencial productivo de las especies forrajeras que ayuden a frenar las presiones por el pastoreo extensivo del ganado caprino en la zona de estudio.
- Consolidar una alianza estratégica entre la Universidad Nacional de Loja, instituciones gubernamentales y ONG's interesadas en la implementación de proyectos de desarrollo que permitan un aprovechamiento sustentable y armónico de los recursos naturales, buscando asegurar su permanencia para generaciones futuras.

8. BIBLIOGRAFÍA

Aguirre, Z; Buri, D; Betancourt, y Geada, G (2014). Composición florística, estructura y endemismo en una parcela de bosque seco en Zapotillo, Arnaldoa 21 (1): Enero – Junio. Loja, Ecuador.

Aguirre, Z; Cueva, E; Merino, B; Quizpe, W y Valverde, A (2001). Evaluacion Ecologica Rapida de la Vegetacion en los Bosques Secos de la Ceiba y Coordillera Aranitas Provincia de Loja, Ecuador.Pp. (15-33). En: Vázquez, M.A., M. Larrea, L. SuárezyP. Ojeda (Eds.). Biodiversidad en los bosques secos del suroccidente de la provincia de Laja: un reporte de las evaluaciones ecológicas

Aguirre, Z; Buri, D; Betancourt, y Geada, G (2014). Composición florística, estructura y endemismo en una parcela de bosque seco en Zapotillo, Loja, Ecuador. Arnaldoa 21 (1): 165-178.

Aguirre, Z y Aguirre, N. (1999). Guía práctica para realizar estudios de comunidades vegetales. Departamento de Botánica y Ecología de la Universidad Nacional de Loja. Loja, Ec. Publicación no. 5: 30 p.

Aguirre, Z y Delgado, T. (2005). Vegetación de los bosques secos de Cerro Negro. Cazaderos, Occidente de la provincia de Loja. En: Vázquez, M.A., J.F. Freire y L. Suárez (Eds.). 2005 Biodiversidad en los bosques secos de la zona de Cerro Negro-Cazaderos, occidente de la provincia de Loja: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas. MAE y Proyecto Bosque Seco. Quito. pp. 9-24.

Aguirre, Z y Josse, C. (2013). Páginas 155-156 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Aguirre, Z y Lars, P. (2005). Composición Floristica y Estado de Conservación de los Bosques Secos del Ecuador. Lyonia. 8(2).2-3.

Aguirre, Z y Santiana, J. (2013). Páginas 95-96 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Aguirre, Z, Kvist, P y Sánchez, O. (2005). Bosques Secos en Ecuador y su Diversidad. Loja-Ec. 26 p.

Aguirre, Z, Medina, B y Josse, C. (2013). Páginas 157-158 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Ouito.

Aguirre, Z. (2001). Diversidad y composición florística de un área de Vegetación Disturbada por un incendio forestal. Tesis previa a la obtención del Grado de Master en Ciencias. Manejo Sustentable de Recursos Naturales. Escuela Superior Politécnica de Chimborazo, Facultad de Recursos Naturales. Riobamba, Ecuador. 108p.

Aguirre, Z. (2012). Especies Forestales de los Bosques Secos del Ecuador. Guía Dendrológica para su Identificación y Caracterización. Proyecto Manejo Forestal Sostenible ante el Cambio Climático. MAE/FAO. Finlandia. Quito-Ecuador. 140 p.

Aguirre, Z. (2013). Páginas 158-159 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Aguirre, Z; Betancout, Y; Geada, G y Jasen, H (2013). Composición florística y estructura de los bosques secos y su gestión para el desarrollo de la provincia de Loja, Ecuador. Loja, Ecuador. Revista AVANCES. 12 p.

Análisis Florístico y estructural del Bosque "el Tundo" Sozoranga. *Herbario LOJA* (Universidad Nacional de Loja) 3: 1–24.

Armijos, J y Villena, A. (2009). Composición Florística y Etnobotánica de la Vegetación Natural del Valle de Casanga de la Provincia de Loja. Tesis Ing. For. Loja, EC, UNL. 162 p.

Buri, D. (2011). Composición florística, estructura y endemismo en el bosque seco de la Reserva Natural la Ceiba, cantón Zapotillo, provincia de Loja. Tesis Ing. For. Loja, Ecuador. Universidad Nacional de Loja Área Agropecuaria y de Recursos Naturales Renovables. 234

Bustamante, T. (2009). Composición florística, estructura y endemismo en el bosque seco de la Reserva Natural Laipuna, Macará, Loja. Tesis Ing. For. Loja, Ecuador.

Universidad Nacional de Loja. Área Agropecuaria y de Recurso Naturales Renovables. Loja-Ecuador, 105 p.

Cañadas, L. (1983). El mapa bioclimático y ecológico del Ecuador. MAG/PRONAREG. Quito.

Cerón, C. (1993). Manual de botánica ecuatoriana, sistemática y métodos de estudio. Chinchero, M, Santiana, J e Iglesias, J. 2013. Páginas 60-61 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Contento, R. (2000). Estudio de la Composición Florística y Regeneración Natural Forestal del Bosque Seco en la Ceiba Grande, cantón Zapotillo. Tesis Ing. For. Loja, EC, UNL. 72 p.

Gentry, A (1995). Diversity and floristic composition of neotropical dry forest. In Bullock S, Mooney H, Medina E (eds) Seasonally dry tropical forest. Cambridge University Press, Cambridge, pp 277.

Granda, V y Guamán, S. (2006). Composición florística, estructura, endemismo y etnobotánica de los bosques secos "Algodonal" y "La Ceiba" en los cantones Macará y Zapotillo de la provincia de Loja. Tesis Ing. For. Loja, EC, UNL. 224 p.

HERBARIO LOJA, UNISIG, CINFA. (2001). Zonificación y determinación de los tipos de bosque seco en el suroccidente de la provincia de Loja. Informe Final. Herbario Loja. Proyecto Bosque Seco, Universidad Nacional de Loja. Loja, Ec. 144 p.

Iglesias, J y Chinchero, M. (2013). Páginas 101-103 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Iglesias, J y Chinchero, M. (2013). Páginas 103-104 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Iglesias, J, Chinchero, M y Santiana, J. (2013). Páginas 97-98 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Lamprecht, H. (1990). Silvicultura en los Trópicos. Trad. Antonio Carrillo. República Federal Alemana. (GTZ) GmbH. 335 p.

López, N. (2001). Norma para el Manejo Sustentable de Bosques Secos. Propuesta de Acuerdo Ministerial. Convenio de Fortalecimiento Institucional. MAE/BID. 2-3 pp.

López. F. (2002). Ecuador-Perú, conservación para la Paz. Editorial UTPL. Loja, Ecuador. P 73-76.

Melo, O y Vargas, R. (2003). Evaluación Ecológica y Silvicultura de Ecosistemas Boscosos. Ibagué.

Ministerio del Ambiente del Ecuador (MAE). (2013). Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Subsecretaría de Patrimonio Natural. Quito.

Montaño, L y Roa, J. (2012). Estado actual de conservación de los bosques secos pluviestacionales del suroccidente de la provincia de Loja. Tesis Ing. For. Loja, EC, UNL. 181 p.

Morales, M. (2002). Estudio de la composición florística y comportamiento de la regeneración natural del bosque seco en tres áreas en el cantón Macara. Tesis Ing. For. Loja, Ecuador. Universidad Nacional de Loja. Área Agropecuaria y de Recursos Naturales Renovables. 143p.

Plasencia, V.; Rodríguez, V. (2007). Composición florística y etnobotánica de los bosques secos en los valles: Catamayo, Malacatos, Vilcabamba y Quinara, en el sur del Ecuador. Tesis Ing. Forestal. Loja, Universidad Nacional de Loja, Área Agropecuaria y de Recursos Naturales Renovables, 227 p.

Quinto, H; Rengifo, R y Ramos, Y. (2009). Mortalidad y Reclutamiento de Árboles en un Bosque Pluvial Tropical de Chocó, Colombia (en línea). Revista SciELO.Consultado el 22 de marzo del 2016. Disponible en: http://www.scielo.org.co.pdf Quito, Ec. Editorial Ayala. 315 p.

Ramírez, T y Naranjo, E. (2009). Composición Florística, Estructura y Estado de Conservación del Bosque Nativo de la Quinta El Padmi, Provincia de Zamora Chinchipe. Tesis previa a la obtención el Título de Ingeniero Forestal. 248 p.

Rosales, C.; Sánchez, O. (2002). Dinámica poblacional en el bosque nublado del Parque Nacional Podocarpus, sector Cajanuma. Tesis Ing. Forestal. Loja, Universidad Nacional de Loja, Área Agropecuaria y de Recursos Naturales Renovables, 122 p.

Santiana, J; Chinchero, M; Iglesias, J y Neill, D (2013). Páginas 58-59 en: Ministerio del Ambiente del Ecuador 2012. Sistema de Clasificación de los Ecosistemas del Ecuador Continental. Ministerio del Ambiente del Ecuador. Quito.

Vázquez, M.A., J.F. Freire y L. Suárez (Eds.). (2005). Biodiversidad en los bosques secos de la zona de Cerro Negro-Cazaderos, occidente de la provincia de Loja: un reporte de las evaluaciones ecológicas y socioeconómicas rápidas. EcoCiencia, MAE y Proyecto Bosque Seco. Quito.

Wadsworth, F. (2000). Producción Forestal para América Tropical. Manual de Agricultura 710-S. 628 p.

Willans, R. (2005). Biodiversidad y Cultura de los Bosques Secos, Ecuador y Perú. Bosques sin Fronteras. Artistas por la Naturaleza. 12 p.

9. ANEXOS

Anexo 1. Inventario General del Bosque Natural del Centro Binacional de formación Técnica Zapotepamba

			Inventario General del Estrato Árboreo del	CBFTZ				
	Cod			Nombre	DAP	HT		N°
Nº	•	Familia	Nombre Científico	Común	(cm)	(m)	G m2	Ind.
1	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	55	6	0,238	1
2	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	29	8	0,066	1
	Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &							
3	T01	Caesalpinaceae	Barnaby	Vainillo	22	6	0,038	1
4	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	15	4	0,018	1
5	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	26	5	0,053	1
6	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	5	0,053	1
7	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	6	0,053	1
8	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	21	5	0,035	1
9	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	40	4	0,126	1
10	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	5	0,053	1
11	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	27	3	0,057	1
12	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	13	4	0,013	1
13	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	11	4	0,01	1
14	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	17	8	0,023	1
15	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	12	6	0,011	1
		Cochlospermace						
16	T01	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	14	4	0,015	1
17	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	20	6	0,031	1
18	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	20	7	0,031	1
19	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	19	7	0,028	1
20	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	15	6	0,018	1

21	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	13	8	0,013	1
22	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	22	7	0,038	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
23	T01	Caesalpinaceae	Barnaby	Vainillo	9	5	0,006	1
24	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	32	4	0,08	1
25	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	4	0,042	1
26	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	14	4	0,015	1
27	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	15	7	0,018	1
28	T01	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	5	2	0,002	1
29	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	21	8	0,035	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
30	T01	Caesalpinaceae	Barnaby	Vainillo	9	5	0,006	1
31	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	8	0,053	1
32	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	12	8	0,011	1
33	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	13	4	0,013	1
34	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	11	5	0,01	1
35	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	10	4	0,008	1
36	T01	Ulmaceae	Celtis loxensis C.C.Berg	Palo Blanco	28	3	0,062	1
37	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	9	0,053	1
38	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	14	6	0,015	1
39	T01	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	14	5	0,015	1
40	T01	Ulmaceae	Celtis loxensis C.C.Berg	Palo Blanco	12	4	0,011	1
41	T01	Ulmaceae	Celtis loxensis C.C.Berg	Palo Blanco	8	4	0,005	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
42	T02	Caesalpinaceae	Barnaby	Vainillo	12	5	0,011	1
43	T02	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	38	7	0,113	1
44	T02	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	32	10	0,08	1

			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
45	T02	Caesalpinaceae	Barnaby	Vainillo	9	10	0,006	1
46	T02	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	29	12	0,066	1
		Cochlospermace						
47	T02	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo-Polo	23	9	0,042	1
48	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	13	4	0,013	1
49	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	8	4	0,005	1
		Cochlospermace						
50	T02	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo-Polo	24	6	0,045	1
51	T02	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	37	12	0,108	1
52	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	46	9	0,166	1
53	T02	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	10	0,042	1
54	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	38	7	0,113	1
55	T02	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano-Cano	27	13	0,057	1
56	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	32	8	0,08	1
57	T02	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano-Cano	37	9	0,108	1
58	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	19	5	0,028	1
59	T02	Ulmaceae	Celtis iguanaea (Jacq.) Sarg.	Uña de Pava	8	6	0,005	1
60	T02	Sapindaceae	Sapindus saponaria L.	Checo o Jorupe	14	7	0,015	1
61	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	21	6	0,035	1
62	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	22	7	0,038	1
63	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	23	6	0,042	1
64	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	34	10	0,091	1
65	T02	Sterculiaceae	Guazuma ulmifolia Lam.	Guázimu	12	7	0,011	1
		Cochlospermace						
66	T02	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo-Polo	28	8	0,062	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
67	T02	Caesalpinaceae	Barnaby	Vainillo	5	5	0,002	1

68	T02	Fabaceae	Geoffroea spinosa Jacq.	Almendro	28	15	0,062	1
69	T02	Moraceae	Maclura tinctoria (L.) Steud.	Sota	8	10	0,005	1
70	T02	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano-Cano	34	13	0,091	1
71	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	21	7	0,035	1
72	T02	Nyctaginaceae	Pisonia aculeata L.	Pego-Pego	37	6	0,108	1
		Cochlospermace						
73	T02	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo-Polo	33	8	0,086	1
74	T02	Asteraceae	Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	Guallache	8	7	0,005	1
75	T02	Asteraceae	Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	Guallache	7	10	0,004	1
76	T03	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	60	12	0,283	1
77	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	8	7	0,005	1
78	T03	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	31	7	0,075	1
79	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	12	7	0,011	1
80	T03	Rutaceae	Zanthoxylum culantrillo (Kunth.) Schult & Schult	Una de gato	9	3	0,006	1
81	T03	Fabaceae	Geoffroea spinosa Jacq.	Almendro	36	11	0,102	1
82	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	16	7	0,02	1
83	T03	Asteraceae	Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	Guayache	21	6	0,035	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
84	T03	Caesalpinaceae	Barnaby	Vainillo	14	5	0,015	1
85	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	15	6	0,018	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
86	T03	Caesalpinaceae	Barnaby	Vainillo	23	7	0,042	1
87	T03	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	31	5	0,075	1
88	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	25	4	0,049	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
89	T03	Caesalpinaceae	Barnaby	Vainillo	19	7	0,028	1
90	T03	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	54	12	0,229	1

			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
91	T03	Caesalpinaceae	Barnaby	Vainillo	10	6	0,008	1
92	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	24 8		0,045	1
93	T03	Bombacaceae	Ceiba trichistandra (A. Gray) Bakh.	ra (A. Gray) Bakh. Ceibo 147 13		13	1,697	1
94	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	21	9	0,035	1
95	T03	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	35	9	0,096	1
96	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	7	6	0,004	1
97	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	18	8	0,025	1
98	T03	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	16	7	0,02	1
99	T03	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	10	5	0,008	1
		Cochlospermace						
100	T03	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	15	7	0,018	1
101	T03	Combretaceae	Terminalia valverdae A. Gentry.	Guarapo	16	8	0,02	1
102	T03	Combretaceae	Terminalia valverdae A. Gentry.	Guarapo	26	10	0,053	1
103	T03	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	31	8	0,075	1
		Cochlospermace						
104	T03	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	16	6	0,02	1
105	T03	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	32	10	0,08	1
106	T03	Combretaceae	Terminalia valverdae A. Gentry.	Guarapo	9	5	0,006	1
107	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	15	5	0,018	1
108	T03	Fabaceae	Erythrina velutina Willd.	Porotillo	5	5	0,002	1
109	T03	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	39	10	0,119	1
110	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	17	7	0,023	1
111	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	7	6	0,004	1
112	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	18	8	0,025	1
113	T03	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	10	7	0,008	1
114	T03	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	21	8	0,035	1

115	T03	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	12	6	0,011	1
		Cochlospermace						
116	T03	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	18	7	0,025	1
117	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	15	5 7		1
118	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	19	8	0,028	1
119	T03	Nyctaginaceae	Pisonia aculeata L.	Pego-pego	16	7	0,02	1
		Cochlospermace						
120	T03	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	23	7	0,042	1
121	T04	Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	Hualtaco	22	10	0,038	1
122	T04	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth.	Lame	14	7	0,015	1
123	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	33	7	0,086	1
124	T04	Sapindaceae	Sapindus saponaria L.	Jorupe	5	5	0,002	1
125	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	23	6	0,042	1
126	T04	Hippocrateaceae	Salacia sp.		32	7	0,08	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
127	T04	Caesalpinaceae	Barnaby	Vainillo	9	6	0,006	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
128	T04	Caesalpinaceae	Barnaby	Vainillo	18	11	0,025	1
129	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	40	12	0,126	1
130	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	11	6	0,01	1
131	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	34	11	0,091	1
132	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	17	5	0,023	1
133	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	34	7	0,091	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
134	T04	Caesalpinaceae	Barnaby	Vainillo	7	5	0,004	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
135		Caesalpinaceae	Barnaby	Vainillo	7	5	0,004	1
136	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	23	7	0,042	1

137	T04	Caesalpinaceae	Senna sp.	Vainillo	6	4	0,003	1
138	T04	Caesalpinaceae	Senna sp.	Vainillo	6	5	0,003	1
139	T04	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth.	Lame	10	6	0,008	1
140	T04	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth.	Lame	7	4	0,004	1
141	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	23	6	0,042	1
142	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	18	5	0,024	1
143	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	10	4	0,008	1
144	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	16	5	0,02	1
145	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	16	6	0,02	1
146	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	8	7	0,005	1
147	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	9	4	0,006	1
148	T04	Moraceae	Maclura tinctoria (L.) Steud.	Sota	22	10	0,038	1
149	T04	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth.	Lame	8	4	0,005	1
150	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	32	10	0,08	1
151	T04	Nyctaginaceae	Pisonia aculeata L.	Pego pego	17	5	0,023	1
		Cochlospermace						
152	T04	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	22	4	0,038	1
153	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	23	7	0,042	1
154	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	41	5	0,132	1
155	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	34	5	0,091	1
156	T04	Combretaceae	Terminalia valverdae A. Gentry.	Guarapo	22	7	0,038	1
157	T04	Bombacaceae	Eriotheca ruizii (K. Schum.) A. Robyns.	Pasallo	31	4	0,075	1
		Cochlospermace						
158		ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	35	4	0,096	1
159	T04	Caesalpinaceae	Senna sp.	Vainillo	6	3	0,003	1
160	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	5	0,042	1
161	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	29	7	0,066	1

162	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	20	6	0,031	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
163	T05	Caesalpinaceae	Barnaby	Vainillo	39	6	0,119	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
164	T05	Caesalpinaceae	Barnaby	Vainillo	12	3	0,011	1
165	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	26	9	0,053	1
166	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	27	7	0,057	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
167	T05	Caesalpinaceae	Barnaby	Vainillo	25	5	0,049	1
168	T05	Fabaceae	Erythrina velutina Willd.	Porotillo	22	9	0,038	1
169	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	15	5	0,018	1
170	T05	Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	Hualtaco	29	12	0,066	1
171	T05	Fabaceae	Erythrina velutina Willd.	Porotillo	26	7	0,053	1
		Cochlospermace						
172	T05	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	24	6	0,045	1
173	T05	Fabaceae	Erythrina velutina Willd.	Porotillo	52	12	0,212	1
174	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	8	3	0,005	1
175	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	24	10	0,045	1
176	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	16	10	0,02	1
177	T05	Nyctaginaceae	Pisonia aculeata L.	Pego pego	7	3	0,004	1
		, ,	Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
178	T05	Caesalpinaceae	Barnaby	Vainillo	8	5	0,005	1
179	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	12	0,042	1
180	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	9	0,042	1
181	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	31	10	0,075	1
182	T05	Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	Hualtaco	35	12	0,096	1
183	T05	Anacardiaceae	Loxopterygium huasango Spruce ex Engl.	Hualtaco	26	12	0,053	1
184	T05	Fabaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano cano	11	7	0,01	1

185	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	19	11	0,028	1
186	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	19	8	0,028	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &				0,004	_
187	T05	Caesalpinaceae	Barnaby	Vainillo	7	7 4		1
100	T05	Casalninasas	Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &	Wainilla	0	4	0.005	1
188	T05	Caesalpinaceae	Barnaby	Vainillo	8	4	0,005	1
100	TO 5	C 1:	Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &	37 ' '11	7	2	0.004	1
189	T05	Caesalpinaceae	Barnaby	Vainillo	7	3	0,004	1
190	T05	Fabaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano cano	13	7	0,013	1
191	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	30	10	0,071	1
192	T05	Fabaceae	Erythrina velutina Willd.	Porotillo	52	12	0,212	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
193	T05	Caesalpinaceae	Barnaby	Vainillo	12	6	0,011	1
194	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	52	8	0,212	1
195	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	34	10	0,091	1
196	T05	Moraceae	Maclura tinctoria (L.) Steud.	Sota	24	8	0,045	1
197	T05	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	32	5	0,08	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
198	T05	Caesalpinaceae	Barnaby	Vainillo	21	6	0,035	1
199	T06	Bombacaceae	Ceiba trichistandra (A. Gray) Bakh.	Ceibo	200	17	3,142	1
200	T06	Nyctaginaceae	Pisonia aculeata L.	Pego Pego	36	10	0,102	1
201	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	8	5	0,005	1
202	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	8	5	0,005	1
203	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	28	7	0,062	1
204	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	7	3	0,004	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
205	T06	Caesalpinaceae	Barnaby	Vainillo	9	4	0,006	1
206	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	24	6	0,045	1

207	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	15	7	0,018	1
208	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	19	9	0,028	1
209	T06	Ulmaceae	Celtis loxensis C.C.Berg	Palo blanco	13	9	0,013	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
210		Caesalpinaceae	Barnaby	Vainillo	12	7	0,011	1
211	T06	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano cano	24	8	0,045	1
212	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	17	8	0,023	1
213	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	19	7	0,028	1
214	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	40	7	0,126	1
215	T06	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano cano	12	6	0,011	1
		Cochlospermace						
216	T06	ae	Cochlospermun vitifolium (Willd.) Spreng.	Polo polo	37	10	0,108	1
217	T06	Euphorbiaceae	Jatropha curcas L.	Pinon	9	6	0,006	1
218	T06	Nyctaginaceae	Pisonia aculeata L.	Pego Pego	21	7	0,035	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
219		Caesalpinaceae	Barnaby	Vainillo	11	6	0,01	1
220	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	23	6	0,042	1
221	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	31	9	0,075	1
222	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	16	7	0,02	1
			Senna mollisima (Humb & Bonpl ex Willd) H S Irwin &					
223	T06	Caesalpinaceae	Barnaby	Vainillo	9	6	0,006	1
224	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	35	10	0,096	1
225	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	18	9	0,025	1
226	T06	Mimosaceae	Acacia macracantha Humb & Bonpl ex Willd	Faique	28	10	0,062	1
227	T06	Nyctaginaceae	Pisonia aculeata L.	Pego Pego	10	5	0,008	1
228	T06	Bombacaceae	Ceiba trichistandra (A. Gray) Bakh.	Ceibo	210	15	3,464	1
229	T06	Nyctaginaceae	Pisonia aculeata L.	Pego Pego	9	4	0,006	1
230	T06	Rannaceae	Albizia multiflora (Kunth) Barneby & J.W. Grimes	Cano cano	54	8	0,229	1

231	T06	Caesalpinaceae	Senna spectabilis (DC.) Irwin & Barneby	Vainillo	10	8	0,008	1	
Tota							18,30		ļ
1							5	231	l

		Inv	ventario General del Estrato Arbustivo del CBFTZ		
N°	Código	FAMILIA	Nombre Cientifico	Nombre Común	N° Individuos
1	T01-SUBP01	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	2
2	T01-SUBP01	Malvaceae	Malachra sp.	Cosa cosa	6
3	T01-SUBP01	Asteraceae	Barnadesia sp.		1
4	T01-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	18
5	T01-SUBP02	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	1
6	T01-SUBP02	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		19
7	T01-SUBP02	Solanaceae	Solanum smithii S. Knapp	Mata perro	2
8	T01-SUBP02	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	3
9	T01-SUBP03	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	10
10	T01-SUBP03	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	7
11	T01-SUBP03	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	4
12	T01-SUBP03	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	1
13	T01-SUBP03	Malvaceae	Wissadula sp	Cosa-cosa	4
14	T01-SUBP04	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	11
15	T01-SUBP04	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	1
16	T01-SUBP04	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	4
17	T01-SUBP04	Tiliaceae	Triumfetta althaeoides Lam.	Cadillo	6
18	T02-SUBP01	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	2
19	T02-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	20

20	T02-SUBP01	Asteraceae	Baccharis trinervis Pers.	Chilca	5
21	T02-SUBP01	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramón	2
22	T02-SUBP01	Malvaceae	Wissadula sp	Cosa-Cosa	7
23	T02-SUBP01	Amaranthaceae	Iresine diffusa Humb. & Bonpl. Ex Willd	Velo de novia	1
24	T02-SUBP02	Malvaceae	Pavonia sp.		2
25	T02-SUBP02	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	9
26	T02-SUBP02	Scrophulariaceae	Scoparia dulcis L.	Anganga	2
27	T02-SUBP02	Malvaceae	Malachra sp.	Cosa cosa	6
28	T02-SUBP02	Malvaceae	Abutilon mollissimum (Cari) Sweet		1
29	T02-SUBP02	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		7
30	T02-SUBP02	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	1
31	T02-SUBP03	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	2
32	T02-SUBP03	Asteraceae	Verbesina sp.		3
33	T02-SUBP03	Asteraceae	Solanum sp		2
34	T02-SUBP03	Solanaceae	Cestrum auriculatum L'Hér.	Sauco	1
35	T02-SUBP03	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		6
36	T02-SUBP03	Malvaceae	Wissadula sp	Cosa-cosa	7
37	T03-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	15
38	T03-SUBP01	Scrophulariaceae	Scoparia dulcis L.	Anganga	7
39	T03-SUBP01	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	4
40	T03-SUBP01	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	7
41	T03-SUBP01	Mimosaceae	Zapoteca andina H.M. Hern.		8
42	T03-SUBP01	Bignonaceae	Tecoma castanifolia (D. Don.) Melch.	Moyuyo macho	15
43	T03-SUBP01	Plumbaginaceae	Plumbago scandens L.		5
44	T03-SUBP02	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	8
45	T03-SUBP02	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	5

46	T03-SUBP02	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	7
47	T03-SUBP02	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	4
48	T03-SUBP02	Bignonaceae	Tecoma castanifolia (D. Don.) Melch.	Moyuyo macho	10
49	T03-SUBP02	Asteraceae	Lycoseris trinervis (D. Don.) Blake		8
50	T03-SUBP03	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	10
51	T03-SUBP03	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	7
52	T03-SUBP03	Scrophulariaceae	Scoparia dulcis L.	Anganga	12
53	T03-SUBP03	Plumbaginaceae	Plumbago scandens L.		3
54	T03-SUBP03	Euphorbiaceae	Jatropha curcas L.	Piñon	2
55	T03-SUBP03	Asteraceae	Brickellia diffusa (Vahl) A. Gray		2
56	T04-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	30
57	T04-SUBP01	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	40
58	T04-SUBP01	Nyctaginaceae	Bougainvillea peruviana Bonpl.	Buganvilla	2
59	T04-SUBP01	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	5
60	T04-SUBP01	Solanaceae	Acnistus arborescens (L.) Schltdl.	Llanangora	3
61	T04-SUBP02	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	15
62	T04-SUBP02	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	7
63	T04-SUBP02	Asteraceae	Ophryosporus peruvianus (Gmel.) King & H. Rob	Monte de la cargason	10
64	T04-SUBP02	Acanthaceae	Tetramerium nervosum Ness.		10
65	T04-SUBP02	Malvaceae	Wissadula sp	Cosa-cosa	2
66	T04-SUBP03	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	4
67	T04-SUBP03	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	10
68	T04-SUBP03	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramon	5
69	T04-SUBP03	Malvaceae	Byttneria sp.	Uña de gato	6
70	T04-SUBP03	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	6
71	T04-SUBP03	Lamiaceae	Hyptis sidifolia (L'Hér.) Briq	Poleo	8

72	T05-SUBP01	Nyctaginaceae	Bougainvillea peruviana Bonpl.	Buganvilla	1
73	T05-SUBP01	Convolvulaceae	Ipomoea carnea Jacq.	Borrachera	1
74	T05-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	10
75	T05-SUBP01	Plumbaginaceae	Plumbago scandens L.		6
76	T05-SUBP01	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		3
77	T05-SUBP02	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	3
78	T05-SUBP02	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	5
79	T05-SUBP02	Malvaceae	Abutilon sp.		11
80	T05-SUBP02	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		13
81	T05-SUBP03	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	20
82	T05-SUBP03	Malvaceae	Abutilon mollissimum (Cari) Sweet		6
83	T05-SUBP03	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		22
84	T05-SUBP03	Scrophulariaceae	Scoparia dulcis L.	Anganga	2
85	T06-SUBP01	Euphorbiaceae	Croton wagneri Mull. Arg.	Mosquera	5
86	T06-SUBP01	Cactaceae	Opuntia ficus indica (L.) Mill.	Tuna	2
87	T06-SUBP01	Asteraceae	Lepidaploa canaescens (Kunth.) H. Rob	Ramón	3
88	T06-SUBP01	Nyctaginaceae	Bougainvillea peruviana Bonpl.	Buganvilla	1
89	T06-SUBP02	Nyctaginaceae	Bougainvillea peruviana Bonpl.	Buganvilla	1
90	T06-SUBP02	Plumbaginaceae	Plumbago scandens L.		3
91	T06-SUBP02	Malvaceae	Malachra sp.	Cosa cosa	6
92	T06-SUBP02	Malvaceae	Abutilon mollissimum (Cari) Sweet		1
93	T06-SUBP03	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		2
94	T06-SUBP03	Tiliaceae	Triumfetta althaeoides Lam.	Cadillo	6
95	T06-SUBP03	Malvaceae	Byttneria sp.	Uña de gato	3
96	T06-SUBP03	Asteraceae	Vernonanthura patens (Kunth) H. Rob.	Laritaco	1
Total					625

			Inventario General del Estrato Herbáceo						
N°	Código	Familia	Nombre Cientifico	Nombre Común	N° Individuos				
1	T01-SUBP01	Lytharaceae	Cuphea racemosa (L.F.) Spreng.	Hierba del toro	30				
2	T01-SUBP01	Commelinaceae	Commelina sp.		4				
3	T01-SUBP01	Poaceae	Melinis minutiflora P. Beauv.		4				
4	T01-SUBP01	Poaceae	Lasiacis ruscifolia (Kunth.) Hitchc.		8				
5	T01-SUBP01	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	3				
6	T01-SUBP02	Asteraceae	Milleria quinqueflora L.	Escobilla	5				
7	T01-SUBP02	Calceolariaceae	Calceolaria sp.	daria sp. Zapatitos de venus					
8	T01-SUBP02	Fabaceae	Teramnus uncinatus (L.) Sw.	nus uncinatus (L.) Sw.					
9	T01-SUBP02	Poaceae	Melinis minutiflora P. Beauv.	5					
10	T01-SUBP02	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	10				
11	T01-SUBP03	Fabaceae	Desmodium sp		6				
12	T01-SUBP03	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	4				
13	T01-SUBP03	Poaceae	Enteropogon mollis (Ness)		11				
14	T01-SUBP03	Calceolariaceae	Calceolaria sp.	Zapatitos de venus	3				
15	T01-SUBP04	Acanthaceae	Ruellia geminiflora Kunth		1				
16	T01-SUBP04	Asteraceae	Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.		7				
17	T01-SUBP04	Lamiaceae	Hyptis sp.		2				
18	T01-SUBP04	Poaceae	Panicum sp.		1				
19	T01-SUBP05	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	7				
20	T01-SUBP05	Verbenaceae	Stachytarpheta sp.	Verbena	15				
21	T01-SUBP05	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen	Chile burro	4				
22	T01-SUBP05	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	3				
23	T02-SUBP01	Solanaceae	Browallia americana L.	Chavelita	18				

24	T02-SUBP01	Malvaceae	Sida rhombifolia L.	Cosa cosa	3
25	T02-SUBP01	Amaryllidaceae	Eucrosia stricklandii (Baker) Meerow		1
26	T02-SUBP01	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen	Chile burro	6
27	T02-SUBP01	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	2
28	T02-SUBP01	Asteraceae	Senecio lloencis L.		15
29	T02-SUBP01	Amaranthaceae	Achyranthes sp.		6
30	T02-SUBP01	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	2
31	T02-SUBP02	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	3
32	T02-SUBP02	Lytharaceae	Cuphea racemosa (L.F.) Spreng.	Hierba del toro	20
33	T02-SUBP02	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen	Chile burro	5
34	T02-SUBP02	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	4
35	T02-SUBP02	Fabaceae	Fiebrigella gracilis Harms		6
36	T02-SUBP03	Asteraceae	Bidens sp.	Amor seco	5
37	T02-SUBP03	Asteraceae	Milleria quinqueflora L.	Escobilla	5
38	T02-SUBP03	Acanthaceae	Ruellia geminiflora Kunth		3
39	T02-SUBP04	Boraginaceae	Heliotropium sp		6
40	T02-SUBP04	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	7
41	T02-SUBP04	Asteraceae	Bidens sp.	Amor seco	17
42	T02-SUBP04	Asteraceae	Milleria quinqueflora L.	Escobilla	20
43	T02-SUBP04	Acanthaceae	Dyschoriste quitensis (Kunth.) Kuntze.		1
44	T02-SUBP05	Fabaceae	Teramnus uncinatus (L.) Sw.		4
45	T02-SUBP05	Poaceae	Melinis minutiflora P. Beauv.		7
46	T02-SUBP05	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	20
47	T02-SUBP05	Calceolariaceae	Calceolaria sp.	Zapatitos de venus	3
48	T03-SUBP01	Amaranthaceae	Alternanthera brasiliana (L.) Kuntze Var. Villosa (Meq.) Kuntze		6
49	T03-SUBP01	Euphorbiaceae	Acalypha sp.		1

50	T03-SUBP01	Solanaceae	Browallia americana L.	Chavelita	2
51	T03-SUBP01	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	6
52	T03-SUBP01	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen	Chile burro	8
53	T03-SUBP01	Lamiaceae	Hyptis sp.		3
54	T03-SUBP02	Fabaceae	Desmodium procumbens (Mill.) Hitchc.		1
55	T03-SUBP02	Acanthaceae	Tetramerium nervosum Nees.		5
56	T03-SUBP02	Asteraceae	Milleria quinqueflora L.	Escobilla	5
57	T03-SUBP02	Scrophulariaceae	Calceolaria sp.	Zapatitos de venus	2
58	T03-SUBP03	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	8
59	T03-SUBP03	Malvaceae	Sida rhombifolia L.	Cosa cosa	3
60	T03-SUBP03	Theophrastaceae	Clavija everganea J.F. Macbr.		1
61	T03-SUBP03	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	7
62	T03-SUBP04	Amaranthaceae	Alternanthera brasiliana (L.) Kuntze Var. Villosa (Meq.) Kuntze		8
63	T03-SUBP04	Poaceae	Melinis minutiflora P. Beauv.		5
64	T03-SUBP04	Scrophulariaceae	Calceolaria sp.	Zapatitos de venus	6
65	T03-SUBP04	Malvaceae	Sida rhombifolia L.	Cosa cosa	1
66	T03-SUBP05	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	4
67	T03-SUBP05	Poaceae	Panicum sp.		8
68	T03-SUBP05	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	3
69	T03-SUBP05	Lamiaceae	Hyptis sp.		2
70	T04-SUBP01	Asteraceae	Milleria quinqueflora L.	Escobilla	7
71	T04-SUBP01	Asteraceae	Bidens sp.	Amorseco	5
72	T04-SUBP01	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	10
73	T04-SUBP01	Fabaceae	Fiebrigella gracilis Harms		7
74	T04-SUBP01	Opiliaceae	Agonandra excelsa Griseb.		7
75	T04-SUBP02	Solanaceae	Browallia americana L.	Chavelita	4

76	T04-SUBP02	Asteraceae	Brickellia diffusa (Vahl) A. Gray	1
77	T04-SUBP02	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze Moradilla	5
78	T04-SUBP02	Fabaceae	Teramnus uncinatus (L.) Sw.	1
79	T04-SUBP02	Boraginaceae	Heliotropium indicum L. Rabo de alacrán	3
80	T04-SUBP03	Fabaceae	Desmodium procumbens (Mill.) Hitchc.	2
81	T04-SUBP03	Theophrastaceae	Clavija everganea J.F. Macbr.	1
82	T04-SUBP03	Boraginaceae	Heliotropium indicum L. Rabo de alacrán	6
83	T04-SUBP03	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze Moradilla	10
84	T04-SUBP04	Acanthaceae	Tetramerium nervosum Nees.	1
85	T04-SUBP04	Scrophulariaceae	Calceolaria sp. Zapatitos de venus	3
86	T04-SUBP04	Acanthaceae	Ruellia geminiflora Kunth	2
87	T04-SUBP04	Fabaceae	Fiebrigella gracilis Harms	6
88	T04-SUBP05	Asteraceae	Senecio lloencis L.	1
89	T04-SUBP05	Poaceae	Panicum sp.	3
90	T04-SUBP05	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze Moradilla	8
91	T04-SUBP05	Fabaceae	Desmodium procumbens (Mill.) Hitchc.	2
92	T05-SUBP01	Boraginaceae	Heliotropium indicum L. Rabo de alacrán	8
93	T05-SUBP01	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen Chile burro	3
94	T05-SUBP01	Acanthaceae	Dicliptera paposana Phil. Dicliptera	18
95	T05-SUBP02	Lamiaceae	Hyptis sp.	2
96	T05-SUBP02	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze Moradilla	15
97	T05-SUBP02	Commelinaceae	Commelina diffusa Burm. Tripa de pollo	1
98	T05-SUBP02	Asteraceae	Acmella alba (L'Hér.) R.K.Jansen Chile burro	8
99	T05-SUBP03	Asteraceae	Brickellia diffusa (Vahl) A. Gray	12
100	T05-SUBP03	Amaranthaceae	Achyranthes aspera L.	5
101	T05-SUBP03	Boraginaceae	Heliotropium indicum L. Rabo de alacrán	10

102	T05-SUBP03	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	10
103	T05-SUBP04	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	6
104	T05-SUBP04	Solanaceae	Browallia americana L.	Chavelita	4
105	T05-SUBP04	Asteraceae	Milleria quinqueflora L.	Escobilla	18
106	T05-SUBP04	Asteraceae	Ophryosporus peruvianus (J.F. Gmel.) R.M. King & H. Rob.		8
107	T05-SUBP05	Verbenaceae	Stachytarpheta straminea Moldenke		4
108	T05-SUBP05	Solanaceae	Browallia americana L.	Chavelita	3
109	T05-SUBP05	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	2
110	T05-SUBP05	Asteraceae	Brickellia diffusa (Vahl) A. Gray		13
111	T06-SUBP01	Solanaceae	Browallia americana L.	Chavelita	1
112	T06-SUBP01	Poaceae	Lasiacis ruscifolia (Kunth.) Hitchc.		8
113	T06-SUBP01	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	3
114	T06-SUBP01	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	3
115	T06-SUBP02	Scrophulariaceae	Calceolaria sp.	Zapatitos de venus	3
116	T06-SUBP02	Poaceae	Lasiacis ruscifolia (Kunth.) Hitchc.		8
117	T06-SUBP02	Poaceae	Melinis minutiflora P. Beauv.		5
118	T06-SUBP02	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	10
119	T06-SUBP03	Boraginaceae	Heliotropium indicum L.	Rabo de alacrán	3
120	T06-SUBP03	Asteraceae	Brickellia diffusa (Vahl) A. Gray		14
121	T06-SUBP03	Acanthaceae	Tetramerium nervosum Nees.		10
122	T06-SUBP03	Malvaceae	Wissodula sp.		2
123	T06-SUBP04	Fabaceae	Fiebrigella gracilis Harms		6
124	T06-SUBP04	Asteraceae	Ophryosporus peruvianus (J.F. Gmel.) R.M. King & H. Rob.		7
125	T06-SUBP04	Amaranthaceae	Alternanthera porrigens (Jacq.) Kuntze	Moradilla	15
126	T06-SUBP04	Commelinaceae	Commelina diffusa Burm.	Tripa de pollo	1
127	T06-SUBP05	Acanthaceae	Tetramerium nervosum Nees.		12

128	T06-SUBP05	Acanthaceae	Dicliptera paposana Phil.	Dicliptera	7
129	T06-SUBP05	Asteraceae	Bidens sp.	Amor seco	17
130	T06-SUBP05	Acanthaceae	Ruellia geminiflora Kunth		1
Total					811

Anexo 2. Resultados obtenidos del cálculo de parámetros ecológicos del estrato arbóreo del CBFTZ

Nombre Cientifico	N° ind	G	Densidad ind/m2	Densidad ind/ha	Abundancia Dr (%)	FR %	Dmr %	IVI %
Acacia macracantha Humb & Bonpl ex Willd	70	2,965	0,0117	117	30,30	8,93	16,20	18,48
Albizia multiflora (Kunth) Barneby & J.W. Grimes	8	0,563	0,0013	13	3,46	5,36	3,08	3,97
Ceiba trichistandra (A. Gray) Bakh	3	8,302	0,0005	5	1,30	3,57	45,35	16,74
Celtis iguanaea (Jacq.) Sarg.	1	0,005	0,0002	2	0,43	1,79	0,03	0,75
Celtis loxensis C.C.Berg	9	0,426	0,0015	15	3,90	5,36	2,33	3,86
Cochlospermun vitifolium (Willd.) Spreng	13	0,641	0,0022	22	5,63	10,71	3,50	6,61
Eriotheca ruizii (K. Schum.) A. Robyns.	15	1,518	0,0025	25	6,49	3,57	8,29	6,12
Erythrina velutina Willd.	5	0,517	0,0008	8	2,16	3,57	2,83	2,85
Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	3	0,043	0,0005	5	1,30	3,57	0,24	1,70
Geoffroea spinosa Jacq.	2	0,163	0,0003	3	0,87	3,57	0,89	1,78
Guazuma ulmifolia Lam.	6	0,503	0,0010	10	2,60	1,79	2,75	2,38
Jatropha curcas L.	1	0,006	0,0002	2	0,43	1,79	0,03	0,75
Loxopterygium huasango Spruce ex Engl.	4	0,253	0,0007	7	1,73	3,57	1,38	2,23
Maclura tinctoria (L.) Steud.	3	0,088	0,0005	5	1,30	5,36	0,48	2,38
Pisonia aculeata L.	45	1,555	0,0075	75	19,48	10,71	8,50	12,90
Salacia sp.	1	0,080	0,0002	2	0,43	1,79	0,44	0,89
Sapindus saponaria L.	2	0,017	0,0003	3	0,87	3,57	0,09	1,51
Senna mollisima (Humb & Bonpl ex Willd) H S Irwin								
& Barnaby	27	0,480	0,0045	45	11,69	10,71	2,62	8,34

Senna sp.	3	0,008	0,0005	5	1,30	1,79	0,05	1,04
Senna spectabilis (DC.) Irwin & Barneby	1	0,007	0,0002	2	0,43	1,79	0,04	0,75
Tecoma stans (L.) Juss. ex Kunth.	4	0,032	0,0007	7	1,73	1,79	0,18	1,23
Terminalia valverdae A. Gentry.	4	0,117	0,0007	7	1,73	3,57	0,64	1,98
Zanthoxylum culantrillo (Kunth.) Schult & Schult	1	0,006	0,0002	2	0,43	1,79	0,03	0,75
TOTAL	231	18,3	0,0385	385	100	100	100	100

Anexo 3. Resultados obtenidos del cálculo de parámetros ecológicos del estrato arbustivo del CBFTZ

ESPECIE	N° Ind.	D Ind/m2	D ind/ha	Dr (%)	V previos	FR %	IVI %
Abutilon mollissimum (Cari) Sweet	8	0,0168	168	1,28	3	3,13	2,20
Abutilon sp.	11	0,0232	232	1,76	1	1,04	1,40
Acnistus arborescens (L.) Schltdl.	3	0,0063	63	0,48	1	1,04	0,76
Baccharis trinervis Pers.	5	0,0105	105	0,80	1	1,04	0,92
Barnadesia sp.	1	0,0021	21	0,16	1	1,04	0,60
Bougainvillea peruviana Bonpl.	5	0,0105	105	0,80	4	4,17	2,48
Brickellia diffusa (Vahl) A. Gray	2	0,0042	42	0,32	1	1,04	0,68
Byttneria sp.	9	0,0189	189	1,44	2	2,08	1,76
Cestrum auriculatum L'Hér.	1	0,0021	21	0,16	1	1,04	0,60
Chromolaena roseorum (B.L. Rob.) R.M. King & H.							
Rob.	72	0,1516	1516	11,52	7	7,29	9,41
Croton wagneri Mull. Arg.	197	0,4147	4147	31,52	16	16,67	24,09
Hyptis sidifolia (L'Hér.) Briq	27	0,0568	568	4,32	6	6,25	5,29
Ipomoea carnea Jacq.	1	0,0021	21	0,16	1	1,04	0,60
Iresine diffusa Humb. & Bonpl. Ex Willd	1	0,0021	21	0,16	1	1,04	0,60
Jatropha curcas L.	2	0,0042	42	0,32	1	1,04	0,68
Lepidaploa canaescens (Kunth.) H. Rob	83	0,1747	1747	13,28	10	10,42	11,85
Lycoseris trinervis (D. Don.) Blake	8	0,0168	168	1,28	1	1,04	1,16

Malachra sp.	18	0,0379	379	2,88	3	3,13	3,00
Ophryosporus peruvianus (Gmel.) King & H. Rob	10	0,0211	211	1,60	1	1,04	1,32
Opuntia ficus indica (L.) Mill.	19	0,0400	400	3,04	6	6,25	4,65
Pavonia sp.	2	0,0042	42	0,32	1	1,04	0,68
Plumbago scandens L.	17	0,0358	358	2,72	4	4,17	3,44
Scoparia dulcis L.	23	0,0484	484	3,68	4	4,17	3,92
Solanum smithii S. Knapp	2	0,0042	42	0,32	1	1,04	0,68
Solanum sp	2	0,0042	42	0,32	1	1,04	0,68
Tecoma castanifolia (D. Don.) Melch.	25	0,0526	526	4,00	2	2,08	3,04
Tetramerium nervosum Ness.	10	0,0211	211	1,60	1	1,04	1,32
Triumfetta althaeoides Lam.	12	0,0253	253	1,92	2	2,08	2,00
Verbesina sp.	3	0,0063	63	0,48	1	1,04	0,76
Vernonanthura patens (Kunth) H. Rob.	18	0,0379	379	2,88	6	6,25	4,57
Wissadula sp	20	0,0421	421	3,20	4	4,17	3,68
Zapoteca andina H.M. Hern.	8	0,0168	168	1,28	1	1,04	1,16
TOTAL	625	1,3158	13158	100	96	100	100

Anexo 4. Resultados obtenidos del cálculo de parámetros ecológicos del estrato herbáceo del CBFTZ

ESPECIES	N° Ind.	D Ind/m2	D ind/ha	Dr (%)	V previos	FR %	IVI %
Acalypha sp.	1	0,033	333	0,12	1	0,78	0,45
Achyranthes aspera L.	5	0,167	1667	0,62	1	0,78	0,70
Achyranthes sp.	6	0,200	2000	0,74	1	0,78	0,76
Acmella alba (L'Hér.) R.K.Jansen	34	1,133	11333	4,19	6	4,65	4,42
Agonandra excelsa Griseb.	7	0,233	2333	0,86	1	0,78	0,82
Alternanthera brasiliana (L.) Kuntze Var. Villosa (Meq.)							
Kuntze	14	0,467	4667	1,73	2	1,55	1,64
Alternanthera porrigens (Jacq.) Kuntze	96	3,200	32000	11,84	11	8,53	10,18

Bidens sp.	44	1,467	14667	5,43	4	3,10	4,26
Brickellia diffusa (Vahl) A. Gray	40	1,333	13333	4,93	4	3,10	4,02
Browallia americana L.	32	1,067	10667	3,95	6	4,65	4,30
Calceolaria sp.	30	1,000	10000	3,70	7	5,43	4,56
Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.	7	0,233	2333	0,86	1	0,78	0,82
Clavija everganea J.F. Macbr.	2	0,067	667	0,25	2	1,55	0,90
Commelina diffusa Burm.	2	0,067	667	0,25	2	1,55	0,90
Commelina sp.	4	0,133	1333	0,49	1	0,78	0,63
Cuphea racemosa (L.F.) Spreng.	50	1,667	16667	6,17	2	1,55	3,86
Desmodium procumbens (Mill.) Hitchc.	5	0,167	1667	0,62	3	2,33	1,47
Desmodium sp	6	0,200	2000	0,74	1	0,78	0,76
Dicliptera paposana Phil.	64	2,133	21333	7,89	8	6,20	7,05
Dyschoriste quitensis (Kunth.) Kuntze.	1	0,033	333	0,12	1	0,78	0,45
Enteropogon mollis (Ness)	11	0,367	3667	1,36	1	0,78	1,07
Eucrosia stricklandii (Baker) Meerow	1	0,033	333	0,12	1	0,78	0,45
Fiebrigella gracilis Harms	25	0,833	8333	3,08	4	3,10	3,09
Heliotropium indicum L.	85	2,833	28333	10,48	15	11,63	11,05
Heliotropium sp	6	0,200	2000	0,74	1	0,78	0,76
Hyptis sp	9	0,300	3000	1,11	4	3,10	2,11
Lasiacis ruscifolia (Kunth.) Hitchc.	24	0,800	8000	2,96	3	2,33	2,64
Melinis minutiflora P. Beauv.	26	0,867	8667	3,21	5	3,88	3,54
Milleria quinqueflora L.	60	2,000	20000	7,40	6	4,65	6,02
Ophryosporus peruvianus (J.F. Gmel.) R.M. King & H.							
Rob.	15	0,500	5000	1,85	2	1,55	1,70
Panicum sp.	12	0,400	4000	1,48	3	2,33	1,90
Ruellia geminiflora Kunth	7	0,233	2333	0,86	4	3,10	1,98
Senecio lloencis L.	16	0,533	5333	1,97	2	1,55	1,76

Sida rhombifolia L.	7	0,233	2333	0,86	3	2,33	1,59
Stachytarpheta sp.	15	0,500	5000	1,85	1	0,78	1,31
Stachytarpheta straminea Moldenke	4	0,133	1333	0,49	1	0,78	0,63
Teramnus uncinatus (L.) Sw.	8	0,267	2667	0,99	3	2,33	1,66
Tetramerium nervosum Ness	28	0,933	9333	3,45	4	3,10	3,28
Wissodula sp.	2	0,067	667	0,25	1	0,78	0,51
TOTAL	811	27,033	270333	100	129	100	100

Anexo 5. Resultado del cálculo del Índice de Shannon del estrato arbóreo, arbustivo y herbáceo

Índice de Shannon del Estrato Arbóreo								
Nombre Cientifico	N° ind	Pi	Ln Pi	Н				
Acacia macracantha Humb & Bonpl ex Willd	70	0,3030303	-1,193922468	-0,36179469				
Albizia multiflora (Kunth) Barneby & J.W. Grimes	8	0,03463203	-3,362976169	-0,11646671				
Ceiba trichistandra (A. Gray) Bakh	3	0,01298701	-4,343805422	-0,05641306				
Celtis iguanaea (Jacq.) Sarg.	1	0,004329	-5,442417711	-0,02356025				
Celtis loxensis C.C.Berg	9	0,03896104	-3,245193133	-0,1264361				
Cochlospermun vitifolium (Willd.) Spreng	13	0,05627706	-2,877468353	-0,16193545				
Eriotheca ruizii (K. Schum.) A. Robyns.	15	0,06493506	-2,734367509	-0,17755633				
Erythrina velutina Willd.	5	0,02164502	-3,832979798	-0,08296493				
Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	3	0,01298701	-4,343805422	-0,05641306				
Geoffroea spinosa Jacq.	2	0,00865801	-4,74927053	-0,04111923				
Guazuma ulmifolia Lam.	6	0,02597403	-3,650658241	-0,09482229				
Jatropha curcas L.	1	0,004329	-5,442417711	-0,02356025				
Loxopterygium huasango Spruce ex Engl.	4	0,01731602	-4,056123349	-0,0702359				
Maclura tinctoria (L.) Steud.	3	0,01298701	-4,343805422	-0,05641306				
Pisonia aculeata L.	45	0,19480519	-1,635755221	-0,31865361				
Salacia sp.	1	0,004329	-5,442417711	-0,02356025				
Sapindus saponaria L.	2	0,00865801	-4,74927053	-0,04111923				

Senna mollisima (Humb & Bonpl ex Willd) H S Irwin & Barnaby	27	0,11688312	-2,146580845	-0,25089906
Senna sp.	3	0,01298701	-4,343805422	-0,05641306
Senna spectabilis (DC.) Irwin & Barneby	1	0,004329	-5,442417711	-0,02356025
Tecoma stans (L.) Juss. ex Kunth.	4	0,01731602	-4,056123349	-0,0702359
Terminalia valverdae A. Gentry.	4	0,01731602	-4,056123349	-0,0702359
Zanthoxylum culantrillo (Kunth.) Schult & Schult	1	0,004329	-5,442417711	-0,02356025
TOTAL	231		Shannon	-2,3279288
IOTAL	231		Equitatividad	0,7531116

Índice de Shannon del Estrato Arbustivo							
ESPECIE	N° Ind.	Pi	Ln Pi	Н			
Abutilon mollissimum (Cari) Sweet	8	0,0128	-4,358310108	-0,05578637			
Abutilon sp.	11	0,0176	-4,039856377	-0,07110147			
Acnistus arborescens (L.) Schltdl.	3	0,0048	-5,339139361	-0,02562787			
Baccharis trinervis Pers.	5	0,008	-4,828313737	-0,03862651			
Barnadesia sp.	1	0,0016	-6,43775165	-0,0103004			
Bougainvillea peruviana Bonpl.	5	0,008	-4,828313737	-0,03862651			
Brickellia diffusa (Vahl) A. Gray	2	0,0032	-5,744604469	-0,01838273			
Byttneria sp.	9	0,0144	-4,240527072	-0,06106359			
Cestrum auriculatum L'Hér.	1	0,0016	-6,43775165	-0,0103004			
Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.	72	0,1152	-2,161085531	-0,24895705			
Croton wagneri Mull. Arg.	197	0,3152	-1,154547921	-0,3639135			
Hyptis sidifolia (L'Hér.) Briq	27	0,0432	-3,141914784	-0,13573072			
Ipomoea carnea Jacq.	1	0,0016	-6,43775165	-0,0103004			
Iresine diffusa Humb. & Bonpl. Ex Willd	1	0,0016	-6,43775165	-0,0103004			
Jatropha curcas L.	2	0,0032	-5,744604469	-0,01838273			
Lepidaploa canaescens (Kunth.) H. Rob	83	0,1328	-2,018911042	-0,26811139			

Lycoseris trinervis (D. Don.) Blake	8	0,0128	-4,358310108	-0,05578637
Malachra sp.	18	0,0288	-3,547379892	-0,10216454
Ophryosporus peruvianus (Gmel.) King & H. Rob	10	0,016	-4,135166557	-0,06616266
Opuntia ficusindica (L.) Mill.	19	0,0304	-3,493312671	-0,10619671
Pavonia sp.	2	0,0032	-5,744604469	-0,01838273
Plumbago scandens L.	17	0,0272	-3,604538306	-0,09804344
Scoparia dulcis L.	23	0,0368	-3,302257434	-0,12152307
Solanum smithii S. Knapp	2	0,0032	-5,744604469	-0,01838273
Solanum sp	2	0,0032	-5,744604469	-0,01838273
Tecoma castanifolia (D. Don.) Melch.	25	0,04	-3,218875825	-0,12875503
Tetramerium nervosum Ness.	10	0,016	-4,135166557	-0,06616266
Triumfetta althaeoides Lam.	12	0,0192	-3,952845	-0,07589462
Verbesina sp.	3	0,0048	-5,339139361	-0,02562787
Vernonanthura patens (Kunth) H. Rob.	18	0,0288	-3,547379892	-0,10216454
Wissadula sp	20	0,032	-3,442019376	-0,11014462
Zapoteca andina H.M. Hern.	8	0,0128	-4,358310108	-0,05578637
TOTAL	625		Shannon	-2,55507278
TOTAL	023		Equitatividad	0,75120604

Índice de Shannon del Estrato Herbáceo								
ESPECIES	N° Ind.	Pi	Ln Pi	H				
Acalypha sp.	1	0,00123305	-6,698268054	-0,00825927				
Achyranthes aspera L.	5	0,00616523	-5,088830142	-0,0313738				
Achyranthes sp.	6	0,00739827	-4,906508585	-0,03629969				
Acmella alba (L'Hér.) R.K.Jansen	34	0,04192355	-3,171907529	-0,13297763				
Agonandra excelsa Griseb.	7	0,00863132	-4,752357905	-0,04101912				
Alternanthera brasiliana (L.) Kuntze Var. Villosa (Meq.) Kuntze	14	0,01726264	-4,059210725	-0,07007269				

Alternanthera porrigens (Jacq.) Kuntze	96	0,11837238	-2,133919863	-0,25259717
Bidens sp.	44	0,05425401	-2,91407842	-0,15810043
Brickellia diffusa (Vahl) A. Gray	40	0,04932182	-3,0093886	-0,14842854
Browallia americana L.	32	0,03945746	-3,232532151	-0,12754751
Calceolaria sp.	30	0,03699137	-3,297070672	-0,12196316
Chromolaena roseorum (B.L. Rob.) R.M. King & H. Rob.	7	0,00863132	-4,752357905	-0,04101912
Clavija everganea J.F. Macbr.	2	0,00246609	-6,005120874	-0,01480918
Commelina diffusa Burm.	2	0,00246609	-6,005120874	-0,01480918
Commelina sp.	4	0,00493218	-5,311973693	-0,02619962
Cuphea racemosa (L.F.) Spreng.	50	0,06165228	-2,786245049	-0,17177836
Desmodium procumbens (Mill.) Hitchc.	5	0,00616523	-5,088830142	-0,0313738
Desmodium sp	6	0,00739827	-4,906508585	-0,03629969
Dicliptera paposana Phil.	64	0,07891492	-2,539384971	-0,20039536
Dyschoriste quitensis (Kunth.) Kuntze.	1	0,00123305	-6,698268054	-0,00825927
Enteropogon mollis (Ness)	11	0,0135635	-4,300372781	-0,05832811
Eucrosia stricklandii (Baker) Meerow	1	0,00123305	-6,698268054	-0,00825927
Fiebrigella gracilis Harms	25	0,03082614	-3,479392229	-0,10725623
Heliotropium indicum L.	85	0,10480888	-2,255616798	-0,23640867
Heliotropium sp	6	0,00739827	-4,906508585	-0,03629969
Hyptis sp	9	0,01109741	-4,501043477	-0,04994993
Lasiacis ruscifolia (Kunth.) Hitchc.	24	0,02959309	-3,520214224	-0,10417403
Melinis minutiflora P. Beauv.	26	0,03205919	-3,440171516	-0,1102891
Milleria quinqueflora L.	60	0,07398274	-2,603923492	-0,19264539
Ophryosporus peruvianus (J.F. Gmel.) R.M. King & H. Rob.	15	0,01849568	-3,990217853	-0,07380181
Panicum sp.	12	0,01479655	-4,213361404	-0,0623432
Ruellia geminiflora Kunth	7	0,00863132	-4,752357905	-0,04101912
Senecio lloencis L.	16	0,01972873	-3,925679332	-0,07744867

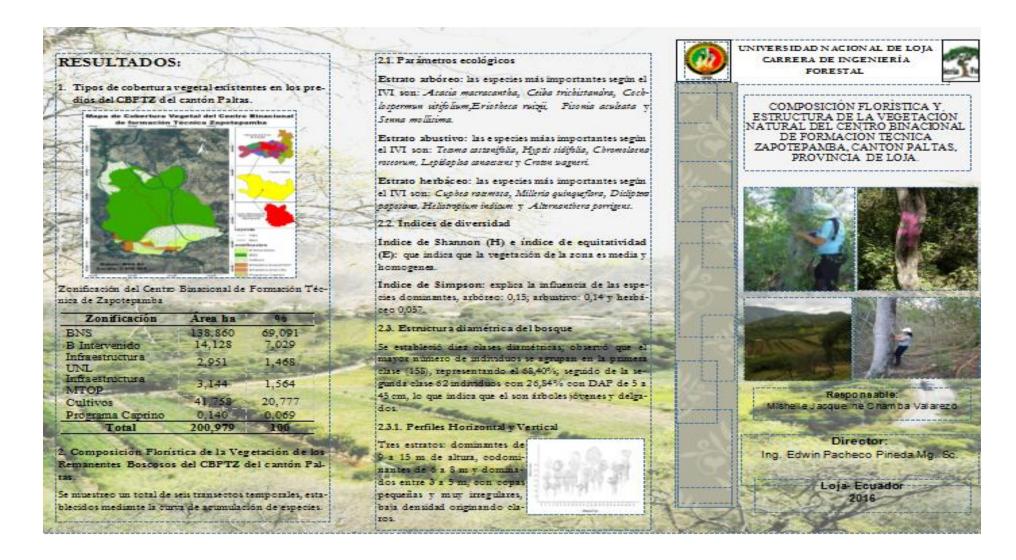
Sida rhombifolia L.	7	0,00863132	-4,752357905	-0,04101912
Stachytarpheta sp.	15	0,01849568	-3,990217853	-0,07380181
Stachytarpheta straminea Moldenke	4	0,00493218	-5,311973693	-0,02619962
Teramnus uncinatus (L.) Sw.	8	0,00986436	-4,618826512	-0,04556179
Tetramerium nervosum Ness	28	0,03452528	-3,366063544	-0,11621428
Wissodula sp.	2	0,00246609	-6,005120874	-0,01480918
TOTAL			Shannon	-3,14941161
IOIAL	811		Equitatividad	0,86958499

Anexo 6. Resultados obtenidos del calculo del Índice de Simpson

Índice de Simpson del Estrato Arbóreo								
Nombre Cientifico	N° ind	Pi	Pi2					
Acacia macracantha Humb & Bonpl ex Willd	70	0,3030303	0,09182736					
Albizia multiflora (Kunth) Barneby & J.W.								
Grimes	8	0,03463203	0,00119938					
Ceiba trichistandra (A. Gray) Bakh	3	0,01298701	0,00016866					
Celtis iguanaea (Jacq.) Sarg.	1	0,004329	1,874E-05					
Celtis loxensis C.C.Berg	9	0,03896104	0,00151796					
Cochlospermun vitifolium (Willd.) Spreng	13	0,05627706	0,00316711					
Eriotheca ruizii (K. Schum.) A. Robyns.	15	0,06493506	0,00421656					
Erythrina velutina Willd.	5	0,02164502	0,00046851					
Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	3	0,01298701	0,00016866					
Geoffroea spinosa Jacq.	2	0,00865801	7,4961E-05					
Guazuma ulmifolia Lam.	6	0,02597403	0,00067465					
Jatropha curcas L.	1	0,004329	1,874E-05					
Loxopterygium huasango Spruce ex Engl.	4	0,01731602	0,00029984					
Maclura tinctoria (L.) Steud.	3	0,01298701	0,00016866					
Pisonia aculeata L.	45	0,19480519	0,03794906					
Salacia sp.	1	0,004329	1,874E-05					
Sapindus saponaria L.	2	0,00865801	7,4961E-05					
Senna mollisima (Humb & Bonpl ex Willd) H S								
Irwin & Barnaby	27	0,11688312	0,01366166					
Senna sp.	3	0,01298701	0,00016866					
Senna spectabilis (DC.) Irwin & Barneby	1	0,004329	1,874E-05					
Tecoma stans (L.) Juss. ex Kunth.	4	0,01731602	0,00029984					
Terminalia valverdae A. Gentry.	4	0,01731602	0,00029984					
Zanthoxylum culantrillo (Kunth.) Schult & Schult	1	0,004329	1,874E-05					
TOTAL	231	Simpson	0,15650007					

Índice de Simpson del Estrato Arbustivo				
ESPECIE	N° Ind.	Pi	Pi2	
Abutilon mollissimum (Cari) Sweet	8	0,0128	0,00016384	
Abutilon sp.	11	0,0176	0,00030976	
Acnistus arborescens (L.) Schltdl.	3	0,0048	0,00002304	
Baccharis trinervis Pers.	5	0,008	0,000064	
Barnadesia sp.	1	0,0016	0,00000256	
Bougainvillea peruviana Bonpl.	5	0,008	,	
Brickellia diffusa (Vahl) A. Gray	2	0,0032		
Byttneria sp.	9	0,0144	0,00020736	
Cestrum auriculatum L'Hér.	1	0,0016	0,00000256	
Chromolaena roseorum (B.L. Rob.) R.M. King	72			
& H. Rob.		0,1152	0,01327104	
Croton wagneri Mull. Arg.	197	0,3152	0,09935104	

Hyptis sidifolia (L'Hér.) Briq	27	0,0432	0,00186624	
Ipomoea carnea Jacq.	1	0,0016	0,00000256	
Iresine diffusa Humb. & Bonpl. Ex Willd	1	0,0016	0,00000256	
Jatropha curcas L.	2	0,0032	0,00001024	
Lepidaploa canaescens (Kunth.) H. Rob	83	0,1328	0,01763584	
Lycoseris trinervis (D. Don.) Blake	8	0,0128	0,00016384	
Malachra sp.	18	0,0288	0,00082944	
Ophryosporus peruvianus (Gmel.) King & H. Rob	10	0,016	0,000256	
Opuntia ficus indica (L.) Mill.	19	0,0304	0,00092416	
Pavonia sp.	2	0,0032	0,00001024	
Plumbago scandens L.	17	0,0272	0,00073984	
Scoparia dulcis L.	23	0,0368	0,00135424	
Solanum smithii S. Knapp	2	0,0032	0,00001024	
Solanum sp	2	0,0032	0,00001024	
Tecoma castanifolia (D. Don.) Melch.	25	0,04	0,0016	
Tetramerium nervosum Ness.	10	0,016	0,000256	
Triumfetta althaeoides Lam.	12	0,0192	0,00036864	
Verbesina sp.	3	0,0048	0,00002304	
Vernonanthura patens (Kunth) H. Rob.	18	0,0288	0,00082944	
Wissadula sp	20	0,032	0,001024	
Zapoteca andina H.M. Hern.	8	0,0128	0,00016384	
TOTAL	625	Simpson	0,14155008	


Índice de Simpson del Estrato Herbáceo			
ESPECIES	N° Ind.	Pi	Pi2
Acalypha sp.	1	0,00123305	1,5204E-06
Achyranthes aspera L.	5	0,00616523	3,801E-05
Achyranthes sp.	6	0,00739827	5,4734E-05
Acmella alba (L'Hér.) R.K.Jansen	34	0,04192355	0,00175758
Agonandra excelsa Griseb.	7	0,00863132	7,45E-05
Alternanthera brasiliana (L.) Kuntze Var. Villosa (Meq.) Kuntze	14	0,01726264	0,000298
Alternanthera porrigens (Jacq.) Kuntze	96	0,11837238	0,01401202
Bidens sp.	44	0,05425401	0,0029435
Brickellia diffusa (Vahl) A. Gray	40	0,04932182	0,00243264
Browallia americana L.	32	0,03945746	0,00155689
Calceolaria sp.	30	0,03699137	0,00136836
Chromolaena roseorum (B.L. Rob.) R.M. King			
& H. Rob.	7	0,00863132	7,45E-05
Clavija everganea J.F. Macbr.	2	0,00246609	6,0816E-06
Commelina diffusa Burm.	2	0,00246609	6,0816E-06

Commelina sp.	4	0,00493218	2,4326E-05	
Cuphea racemosa (L.F.) Spreng.	50	0,06165228	0,003801	
Desmodium procumbens (Mill.) Hitchc.	5	0,00616523	3,801E-05	
Desmodium sp	6	0,00739827	5,4734E-05	
Dicliptera paposana Phil.	64	0,07891492	0,00622756	
Dyschoriste quitensis (Kunth.) Kuntze.	1	0,00123305	1,5204E-06	
Enteropogon mollis (Ness)	11	0,0135635	0,00018397	
Eucrosia stricklandii (Baker) Meerow	1	0,00123305	1,5204E-06	
Fiebrigella gracilis Harms	25	0,03082614	0,00095025	
Heliotropium indicum L.	85	0,10480888	0,0109849	
Heliotropium sp	6	0,00739827	5,4734E-05	
Hyptis sp	9	0,01109741	0,00012315	
Lasiacis ruscifolia (Kunth.) Hitchc.	24	0,02959309	0,00087575	
Melinis minutiflora P. Beauv.	26	0,03205919	0,00102779	
Milleria quinqueflora L.	60	0,07398274	0,00547345	
Ophryosporus peruvianus (J.F. Gmel.) R.M.				
King & H. Rob.	15	0,01849568	0,00034209	
Panicum sp.	12	0,01479655	0,00021894	
Ruellia geminiflora Kunth	7	0,00863132	7,45E-05	
Senecio lloencis L.	16	0,01972873	0,00038922	
Sida rhombifolia L.	7	0,00863132	7,45E-05	
Stachytarpheta sp.	15	0,01849568	0,00034209	
Stachytarpheta straminea Moldenke	4	0,00493218	2,4326E-05	
Teramnus uncinatus (L.) Sw.	8	0,00986436	9,7306E-05	
Tetramerium nervosum Ness	28	0,03452528	0,00119199	
Wissodula sp.	2	0,00246609	6,0816E-06	
TOTAL	811	Simpson	0,05720815	

Anexo 7. Vallores dasométrcios totales de las especie del bosque seco Natural del Centro de

	G	Vol	N°
Especie	m2/sp	m3/sp	Ind
Ceiba trichistandra (A. Gray) Bakh	8,30	47,15	3
Acacia macracantha Humb & Bonpl ex Willd	2,97	8,65	70
Eriotheca ruizii (K. Schum.) A. Robyns.	1,52	5,20	15
Pisonia aculeata L.	1,56	3,46	45
Erythrina velutina Willd.	0,52	2,15	5
Albizia multiflora (Kunth) Barneby & J.W. Grimes	0,56	1,97	8
Cochlospermun vitifolium (Willd.) Spreng	0,64	1,66	13
Guazuma ulmifolia Lam.	0,50	1,54	6
Celtis loxensis C.C.Berg	0,43	1,19	9
Loxopterygium huasango Spruce ex Engl.	0,25	1,10	4
Senna mollisima (Humb & Bonpl ex Willd) H S Irwin & Barnaby	0,48	1,09	27
Geoffroea spinosa Jacq.	0,16	0,76	2
Terminalia valverdae A. Gentry.	0,12	0,37	4
Maclura tinctoria (L.) Steud.	0,09	0,29	3
Salacia sp.	0,08	0,21	1
Fulcaldea laurifolia (Bonpl.) Poir. ex Less.	0,04	0,10	3
Tecoma stans (L.) Juss. ex Kunth.	0,03	0,07	4
Sapindus saponaria L.	0,02	0,04	2
Senna spectabilis (DC.) Irwin & Barneby	0,01	0,02	1
Jatropha curcas L.	0,01	0,01	1
Senna sp.	0,01	0,01	3
Celtis iguanaea (Jacq.) Sarg.	0,01	0,01	1
Zanthoxylum culantrillo (Kunth.) Schult & Schult	0,01	0,01	1

Anexo 8. Triptico Informativo

INTRODUCCION:

En Equador los bosques secos se enquentran en el centro y sur de la segión occidental de los Andes. en las provincias de Esmeraldas, Manabi, Guayas, El Oro y Loja. Originalmente cerca del 35% (28000 km2) del Ecuador occidental estaba cubierto por bosque seco, se estima que el 50% habria desaparecido debido a que los mismos se encuentum ubicados en zonas relativamente pobladas, muchas veces en suelos aptos para cultivos v por tal razón han sido muy intervenidos v destruidos mucho más que los basques humedos (Aguirre & Kust, 2005)

En el sur del país, especificamente en la protincia de Loja se encuentra la mayor superficie de bosque seco con un 31 %, mismo que se encuentra en un rango altitudinal entre 0 a 1100 monm, que incluyen las tierras bajas, estribaciones occidentales bajas de la cordillera de los andes y los valles secos interandinos del sur (Aguirre & Kvist, 2005). Se puede considerar estos bosque s como el "corazón del Centro de Endemismo Tumbesino": una de las regiones más importantes para la conservación en el mundo y se presenta por la presencia de la comiente cilida de El Niño, la fina de Humboldt, los tientos y la topografia (López,

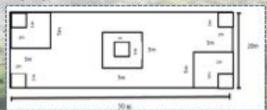
Estos econistemas en general estin ubicados en zonas relativamente pobladas, muchas reces en suelos aptos para cultivos y por tal razón han sido muy intervenidos y destruidos mucho más que los bosques humedos (Janzen 1988). Los bosques secos de la protincia de Loja forman parte de la Región Tumbesina, hasta la actualidad ha desaparecido entre el 90 y 90% de su obbertura vegetal original (Naturaleza & Oultura 2005).

OBJETIVO GENERAL:

Contribuir al conocimiento de la composición floristica y estructura de la vegetación del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas, con la finalidad de fomentar la investigación.

OBJETIVOS ESPECÍFICOS:

- Identificar y describir los tipos de cobertura vesetal natural existentes en los remanentes boscosos del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas.
- Determinar la composición florística y estructura de la vegetación del Centro Binacional de Formación Técnica Zapotepamba del cantón Paltas.
- Difundir los resultados a los directivos y técnicos del CBFT-Z, a los estudiantes de la Carrera de Ingenieria Forestal de la Universidad Nacional de Loja v de más interesados en el tema.


METODOLOGIA

se realizo en el Centro Binacional de Formación Técnica Zapotepamba (CBFT-Z), de la universidad Nacional de Lois, con una superficie de

200 ha. Se ubica entre las coordenadas geograficas: 636 082 O v 9 555 898 S. limita al norte al bamo Guaypira, al sur al bamo Zapotepamba, al este al bamio El Almendral y oeste con el barrio Sahamilla

- 1. Metodología para identificar y Describir los Tipos de Cobertura Vegetal Natural existentes en los Predios del CBFTZ
- Elaboración del mapa de cobertura vegetal: Se recopiló ortofotos del año 2010, obtenidas del CIN-FA, se determinó el árez de estudio dentro de h misma se identificó la cobertura vegetal utilizando el programa ArcGis 10, el mapa se verificó en campo y se tomó puntos GPS.
- 2. Metodología para determinar la Composición Plorística y Estructura de la Vegetación de los Remanentes Boscosos del CBFTZ.
- Se instaló seis transectos temporales de 20 x 50m (1000 m²), cada uno separado cada 100 m, para evahar el estrato arbóreo, dentro de misma se ubicó tres subparcelas para evaluar el estrato arbustivo de 5 x 5 m (25 m²) y para el estrato herbáceo de 1 x 1

- · Se calculó los parámetros ecológicos: Densidad absoluta (D), Denudad relativa (Dr), Domman va relativa (Dmr), Frequencia (Fr) e indice de valor de importancia IVI
- . La diversidad de la vegetación se obtuvo mediante el indice de Shannon (M) e indice de Sampson (8 (Individuos <5 cm de DAP, arbustos y hierbas).
- La estructura diamétrica del bosque de individuos arboreos mayores o iguales a 5 cm de DAP y para lo perfiles vertical y honzontal se selecciono uno de los transectos estableccios de /1 000 may.