Por favor, use este identificador para citar o enlazar este ítem: https://dspace.unl.edu.ec/jspui/handle/123456789/27840
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorEdison Leonardo, Coronel Romero-
dc.contributor.authorBenítez Lanche, Patricio Bolívar-
dc.date.accessioned2023-09-05T15:26:33Z-
dc.date.available2023-09-05T15:26:33Z-
dc.date.issued2023-09-05-
dc.identifier.urihttps://dspace.unl.edu.ec/jspui/handle/123456789/27840-
dc.descriptionStudies on vehicular accident rates allow identifying the factors that affect a road accident; therefore, it is essential to conduct this type of studies, which is why this work aims to apply data mining in vehicular accident rates in the urban area of Loja, through the implementation of the methodology of Knowledge Discovery in Databases (KDD) considering five stages: (i) integration and data collection; (ii) selection, cleaning and transformation; (iii) data mining, (iv) interpretation and presentation of results; and (v) dissemination and use: (i) data integration and collection; (ii) selection, cleaning and transformation; (iii) data mining, (iv) interpretation and presentation of results; and (v) dissemination and use. The analyzed data were obtained from the standardized traffic accident records held by the Operational Traffic Control Unit (UCOT) during the period 2018 - 2021. Using the OpenRefine tool, data selection, cleaning and transformation were performed, such as the comparison of the most influential variables within the traffic records. To apply data mining, the decision tree technique was used, using the J48 and CART algorithms, through WEKA and Python tools, respectively. Forty-three different tests were performed to compare the predictive models. The Python tool showed better levels of performance and accuracy using the variables hour (41.62%) and urban parish (34.59%); while the WEKA tool generated higher results of correctly classified instances for the variables "day", "typology", "causes", "nro_injured" and "nro_dead" with 36.21%, 58.37%, 38.10% and 98.64% respectively. It was concluded that data mining can be applied in the urban area of Loja Canton, through predictive models capable of forecasting the probability of a traffic accident in the urban area of Loja Canton based on the 370 records from the year 2021. This allowed generating 370 resulting probability percentages and distinct patterns for each of the vehicle accident attributes. Keywords: KDD Methodology, Decision trees, WEKA, Python, Traffic accident.  es_ES
dc.description.abstractLos estudios sobre accidentabilidad vehicular permiten identificar los factores que inciden en un siniestro vial; por lo tanto, es imprescindible realizar este tipo de estudios, motivo por el cual este trabajo tiene como objetivo aplicar la minería de datos en la accidentabilidad vehicular en la zona urbana del cantón Loja, mediante la implementación de la metodología de Descubrimiento de Conocimiento en Bases de Datos (KDD) considerando cinco etapas: (i) integración y recopilación de datos; (ii) selección, limpieza y transformación; (iii) minería de datos, (iv) interpretación y presentación de resultados; y (v) difusión y uso. Los datos analizados se obtuvieron de los registros estandarizados de accidentes de tránsito que posee la Unidad de Control Operativo de Tránsito (UCOT) durante el periodo 2018 – 2021. Utilizando la herramienta OpenRefine se realizó la selección, limpieza y transformación de datos, como la comparación de variables más influyentes dentro de los registros de tránsito. Para aplicar la minería de datos se utilizó la técnica de árboles de decisión, usando los algoritmos J48 y CART, a través de las herramientas WEKA y Python respectivamente. Se realizaron 43 pruebas diferentes donde se compararon los modelos predictivos. La herramienta Python presentó mejores niveles de rendimiento y exactitud usando las variables hora (41,62%) y parroquia urbana (34,59%); mientras que la herramienta WEKA generó mayores resultados de instancias clasificadas correctamente para las variables “dia”, “tipologia”, “causas”, “nro_heridos” y “nro_fallecidos” con el 36,21%, 58,37%, 38,10% y 98,64 % respectivamente. Se concluyó que se puede aplicar la minería de datos en la zona urbana del cantón Loja, a través de modelos predictivos capaces de predecir la probabilidad de un accidente de tránsito en la zona urbana del cantón Loja a través de los 370 registros del año 2021, lo que permitió generar 370 porcentajes de probabilidades resultantes y patrones distintos para cada una de los atributos de accidentabilidad vehicular. Palabras clave: Metodología KDD, Árboles de decisión, WEKA, Python, accidentes de tránsito.es_ES
dc.format.extent120 p.es_ES
dc.language.isospaes_ES
dc.publisherUniversidad Nacional de Lojaes_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/ec/es_ES
dc.subjectMETODOLOGÍA KDDes_ES
dc.subjectÁRBOLES DE DECISIÓNes_ES
dc.subjectPYTHONes_ES
dc.subjectWEKAes_ES
dc.subjectACCIDENTES DE TRÁNSITOes_ES
dc.titleMINERÍA DE DATOS EN LA ACCIDENTABILIDAD VEHICULAR EN LA ZONA URBANA DEL CANTÓN LOJAes_ES
dc.title.alternativeDATA MINING ON VEHICLE ACCIDENT RATES IN THE URBAN AREA OF LOJA CANTONes_ES
dc.typebachelorThesises_ES
Aparece en las colecciones: TRABAJOS DE TITULACION AEIRNNR

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PatricioBolívar_BenítezLanche.pdf37,92 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.