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1   Title 
 

“Comparative analysis of machine learning algorithms and their application 

in social-aware load balancing systems for next generation mobile networks” 
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2   Summary 
 

El balanceo de carga móvil (MLB) es un caso de uso de las Redes Autoorganizadas (SON) 

cuyo objetivo es el de mantener el buen desempeño de la red al evitar el aparecimiento 

de celdas sobrecargadas, las cuales pueden llevar a un empobrecimiento de la experiencia 

de usuario debido a la falta de recursos. Un habilitador clave para la implementación del 

MLB ha sido el aprendizaje máquina (ML), ya que permite que la red aprenda cuál es la 

mejor configuración que puede ser adoptada en el caso de la ocurrencia de una celda 

sobrecargada y converger a una solución aceptable. Sin embargo, en los últimos años, un 

nuevo habilitador que puede impulsar el desempeño de los algoritmos de ML ha 

aparecido: los sistemas social conscientes. En el presente trabajo, se realizó una revisión 

de literatura sistemática para explorar propuestas actuales de algoritmos de MLB basados 

en ML que emplean información social consciente para su operación. El objetivo es 

identificar sus características principales, y basados en ellas, determinar sus posibles 

escenarios de aplicación. Finalmente, se modeló un escenario urbano de prueba, y se 

realizó un análisis cualitativo, usando las características definidas, para definir cuál 

algoritmo sería más conveniente de ser implementado en el escenario de prueba.    

Palabras Clave: redes celulares, redes de nueva generación, SON, balanceo de carga, 

machine learning, social consientes, context-aware, optimización proactiva de la red. 

 

2.1   Abstract 

Mobile load balancing (MLB) is a use case of Self-Organizing Networks (SON) whose 

objective is to maintain the good performance of the network by avoiding the appearance 

of overloaded cells, which can lead to a decrease in user experience due to the lack of 

resources. A key enabler for the implementation of MLB has been machine learning 

(ML), as it allows the network to learn what is the best configuration that can be adopted 

in case a load hotspot occurs and converge to an acceptable solution. However, in the past 

years, a new enabler that can boost the performance of ML algorithms has appeared: 

social-aware systems. In the hereby work, a systematic literature review is performed to 

explore current proposals of Machine Learning-based MLB algorithms that employ 

social-aware information for their operation. The aim is to identify their main 

characteristics, and based on them, determine their possible application scenarios. Finally, 
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an urban test scenario is modeled, and a qualitative analysis is performed, using the 

defined characteristics, to define which algorithm would be more suitable to be 

implemented in the test scenario.          

Keywords: cellular networks, next generation networks, SON, load balancing, machine 

learning, social-aware, context-aware, proactive network optimization. 
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3   Introduction 
 

Next generation mobile networks (NGMN) have experienced an important raise in 

complexity during recent years, promoted by the need of providing higher network 

capacities with stringent requirements for satisfying the demands of a continuously 

increasing number of connected devices, each of them with different Quality of Service 

(QoS) needs. 

 

This increase in complexity comes at the cost of a higher operational expenditure (OPEX) 

and more difficult network optimization [1]. Self-Organizing Networks (SON) is a 

network automation concept that seeks to bring intelligence to the network by giving it 

the capabilities of self-configuration, self-optimization, and self-healing. The goals of 

SON are to simplify network management, to reduce capital and operational costs 

(CAPEX/OPEX), and to improve the performance of the network. 

 

Self-optimization in SON refers to the application of techniques for optimizing the 

network parameters in an automatic manner. This process is carried out in the following 

manner: 1) The network collects data from its operation through measurements, 2) new 

operation parameters are computed based on the evaluation of the measurements and 

finally, 3) the new parameter values are implemented in the network. [2] One of the most 

important use cases of self-optimization is Mobile Load Balancing (MLB). 

 

Mobile Load Balancing (MLB) is a self-optimization method for managing cell 

congestion by transferring traffic from a congested cell to adjacent cells with available 

resources. The main goal is to maintain the end-user experience and a good performance 

of the network. Mobile load balancing is implemented by measuring several KPIs from 

the network and the UEs, for using them to tune the parameters that govern the handover 

(HO) process. The handover process is the responsible for transferring a UE from one cell 

to another. Thus, when a cell is overloaded, the network sets its HO parameters in such a 

way that allows an adjacent cell to take some of the users of the congested cell.   
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Mobile networks generate an enormous amount of data that can enable the making of 

better management decisions. Machine learning (ML) algorithms are one of the most 

popular methods to analyze network data for fulfilling the objectives of SON.  In 

literature, it is possible to find many approaches that use ML algorithms for solving the 

load balancing problem; some of the most commonly implemented methods for this are 

reinforcement learning, fuzzy controllers, and regression trees.  

 

In NGMN, traffic is regarded as fast-changing and with an imbalanced spatial-temporal 

distribution, which poses a challenge for load balancing algorithms [3]. This is where the 

concept of context-awareness (CA) comes into play. Context is any information that can 

be used to characterize the situation of an entity, where an entity can be a person, place, 

or physical or computational object [4]. A context-aware computing system is capable of 

collecting and analyzing the context information for adjusting its operation accordingly. 

For instance, it is possible to characterize the traffic distribution of a mobile network by 

understanding the user’s behavior and its geolocation.   

 

The context is often challenging to uncover, unfold over time, and it is difficult to collect 

personal data due to privacy concerns [1]. However, through the social interaction of the 

users with the network and with their pairs is possible to deduce the traffic context. For 

this reason, public online data is used to retrieve user behavior information. Online data 

can come from a wide variety of sources, including social networks, video/photo sharing 

sites, online forums, product reviews/ratings, and wikis [1].  

 

As the number of users and requirements keeps growing, networks will have to increase 

their complexity to keep up with the demand. The potential of coupling ML with social-

aware systems constitutes a viable solution to enable the load optimization of mobile 

networks in an automated and efficient manner. This survey seeks to explore current 

proposals of ML-based social-aware load balancing and their viability to be implemented 

in a real-life scenario.     
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The rest of this work is organized as follows: Section 4 discusses similar survey works in 

which the state of the art of SON, self-optimization, and load balancing methods is 

reviewed. The main trends in MLB are identified here. Section 5 begins by describing the 

methodology followed for doing the systematic literature review. It then introduces the 

social-aware load balancing algorithms that were identified in the literature review and 

explains their operation. In the same section, an urban test case scenario is modeled; this 

scenario will be used to compare the MLB algorithms. In Section 6, the algorithms are 

characterized and compared to find out which one would be more suitable to be applied 

to the test deployment. The results of this comparison are shown here. Next, in Section 7, 

the obtained results are discussed, in Section 8 the conclusions reached during the 

execution of this work are stated and finally, in Section 9, some recommendations are 

shared.  
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4   Theoretical Framework 
 

4.1   Related Works 

There have been several survey studies regarding the different approaches taken for 

solving the load balancing problem in SON. In this section, we will discuss the most 

important trends in SON, self-optimization, and load balancing that we were able to 

identify from the review of a group of surveys conducted by different authors during the 

2017 to 2022 period. A comparison between the methodologies and the results of these 

surveys is shown in Table 1. At the end of this section, we will focus on the works related 

to the use of social-aware data for load balancing.     

 

Table 1. Comparison of survey studies on SON, self-optimization, and load balancing. 

Study 
Publication 

Date 
Study Description Findings 

[5] 2017 A literature review of the past 15 

years until the year of the study was 

performed. The authors classified 

the reviewed works in terms of the 

used learning method, the tackled 

SON use case, and how each 

solution performed.     

The study built a foundation in 

which researchers can understand 

the basics of the most important ML 

algorithms and how they are 

applied to different SON use cases. 

It is stressed that ML solutions are 

necessary for enabling autonomous 

and intelligent networks.     

[6] 2018 The review focuses on SON for 5G 

networks and the importance of ML 

for enabling SON. It introduces the 

basic concepts of SON and 5G 

network management. Then, it 

focuses on the evolution of SON in 

the 3GPP standard. it also provides 

guidelines for selecting the most 

appropriate ML method for each use 

case. Finally, the main sources of 

data for intelligent network 

management are explored.     

The study showed that NG-SON 

has to be redefined as an embedded 

feature of 5G network, instead of 

only an add-on. It also highlighted 

the fact that current networks 

already generate enormous 

amounts of data, that when properly 

processed, can allow autonomous 

and intelligent management of the 

network. 

[1] 2020 The study is divided into two parts. 

In the first part, a review of the 

methods for inferring the CPSS 

context from heterogeneous data 

sources is presented. In the second 

part, the study explored the methods 

used for integrating context 

knowledge with proactive 

optimization techniques. Both 

sections present state-of-the-art ML 

techniques for performing these 

tasks. 

The study showed the most 

important technologies for online-

data analytics that can support the 

paradigm change from reactive 

optimization to proactive 

optimization.  

The study also created a foundation 

from which researchers can 

understand what are the most 

valuable context data and their 

sources.  

[7] 2021 The study is a detailed survey of 

SON evolution from 4G to 5G 

The study presented an exhaustive 

overview of the SON paradigm. It 
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networks. It begins by introducing 

the comprehensive background of 

SON. Next, it introduces the ML 

solutions implemented by SON. 

Finally, it explores open issues and 

research trends.    

also showed the challenges that 

SON has to overcome for its 

implementation in 5G networks and 

stressed the necessity of ML 

methods for empowering SON to 

meet 5G requirements. 

This work constitutes a valuable 

step for opening research lines 

about SON. 

[8] 2022 This study presents a road map for 

introducing cost-effective, flexible, 

and intelligent load balancing in 

HetNets. The study starts by 

providing an overview of the load 

balancing problem. Next, it presents 

a review of ML-based load 

balancing models. Finally, a 

summary of the challenges and 

future research lines are presented.    

The study presented a solid report 

on the development of ML-based 

load balancing methods in HetNets, 

the technical issues relating to their 

implementation, their performance, 

and their shortcomings.  

 

4.1.1   Machine Learning 

The increasing number of connected devices, the appearance of new services, and the 

demand for higher capacity have raised the complexity of mobile networks. It is possible 

to see this in the enormous amounts of tunable parameters that nodes possess for adjusting 

their operation. In addition, the appearance of heterogeneous networks (HetNets) will 

only increase the number of connected nodes. In this scenario, network management 

becomes a difficult task with a high cost. Therefore, the need to automatize the operation 

and optimization of the network is justified. 

 

Huge amounts of data are generated from the control and management functions of the 

networks [6]. With the right tools to analyze this data, it will be possible to enable 

intelligence, self-awareness, and self-adaptability, thus reducing the complexity of 

network management. Machine Learning and Big Data are technologies that have the 

potential to empower the intelligent operations of SON [7].   

 

ML is a set of methods that enable computers to learn, adapt and optimize a model for 

pattern recognition [8]. The attractive part of ML methods lies in their ability to learn 

from the data generated by the system, allowing it to forecast work scenarios and adapt 

accordingly. This improves the performance of the network and reduces OPEX by 

limiting human intervention in network management. At this point, there exist many 
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optimization works focusing on exploiting Big Data, building a SON engine architecture, 

and developments in machine learning [1].  

 

Most of the works that seek to bring SON solutions to 5G are based on ML [7], leaving 

classical optimization methods behind. For example, in [9], a three-fold approach for load 

balancing in ultra-dense networks (UDNs) is proposed. The authors introduce a two-

layers architecture where the upper layer implements a k-means algorithm for clustering 

cells to adapt to their local traffic variations. The bottom layer uses a deep reinforcement 

learning (DRL) algorithm for learning the best MLB policy for intra-cluster load 

balancing. Finally, an offline evaluation system is applied for ensuring that the system 

can always operate with the optimal MLB policy and enable the exploration of policies 

beyond the ones currently implemented. Likewise, in [10] the authors presented a 

mobility-aware DRL solution for load balancing. Their method configures the HO 

parameters following the mobility patterns of the users to achieve approximately the same 

quality level for each of them. The results show a decrease in the number of unsatisfied 

subscribers and a more balanced network.  

 

Classical optimization methods such as genetic algorithms, linear programming, particle 

swarm algorithms, or other heuristic approaches, can be applied together with machine 

learning mechanisms as the optimization search strategy of the mobile network [11]. 

Examples of this can be found in [12] and [13], where RL methods are combined with 

fuzzy logic controllers (FLC), which are a classical method of load balancing, for 

optimizing the performance of the latter. These works demonstrated that it is possible to 

obtain optimization strategies that combine the best of both approaches, the fast response 

of FLCs, and the improvement in performance due to the RL algorithms [12]. The use of 

ML algorithms for optimizing classical load balancing methods can enable a self-

adaptative, optimal, and cost-effective optimization in scenarios where computational 

resources are limited. 
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4.1.2   Proactive Load Balancing 

In order to meet the requirements of 5G and NGMN, current classical SON methods have 

to evolve from reactive to proactive [7].  Classical SON methods are reactive, which 

means that they get into action after a problem occurs and is detected, whereas, in 

proactive SON, the network can forecast operating scenarios and tune its parameters for 

adapting to changes in traffic before a problem appears. This is important because the 

time-scale in which an optimization algorithm operates heavily influences the QoS [1]. A 

long delay in the optimization answer when a problem arises, will lead to user 

dissatisfaction. For this reason, the tendency in optimization algorithms is to push their 

time-scale to be near real-time and even proactive [1]. 

 

For enabling the change of paradigm from reactive optimization to proactive 

optimization, the network must be able to identify the context in which it operates. The 

context can be derived from data such as geolocation, public online data of attendance to 

events, and historical network usage. For example, Klaine et al. [5] explain that through 

the analysis of historical data, it is possible to allow the construction of normal network 

operation scenarios. By knowing what are the parameters of regular network operation, it 

is possible to forecast where a possible issue might arise.              

 

4.1.3   Social-Awareness 

Network optimization can be greatly improved with the understanding of user behavior 

and the spatial-temporal distribution of traffic [1]. The user information from which we 

can derivate this data constitutes the context of the network. Examples of this kind of 

information include the geolocation of the UEs, the popularity of the content consumed 

by the users, the user’s sentiment, and the relationships between different users. The 

computer systems that use the context for taking decisions, executing tasks, and 

delivering services are called context-aware.  

 

It is challenging to elucidate the context of a mobile network. User data is difficult to 

retrieve due to privacy concerns. Fortunately, internet users and more specifically, social 

media users, generate a great amount of data voluntarily. This data contains information 
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that strongly correlates to the behavior of the user, making it an optimal source for 

inferring their context. Social networks are one of the main sources of context data. 

Examples of these platforms are Twitter, Facebook, or Instagram. Other sources of 

context data include calendars, open databases, event aggregators, photo/video sharing 

sites, online forums, product review ratings, and wikis [1] [14]. In this work, the term 

context-aware will be used as a generalization of the paradigm of social-aware 

information, which includes information such as location, velocity and public social 

network data.  

 

From the surveys analyzed for this section, only the work of Bo Ma et al. [1] made a 

review specifically focused on context-aware balancing methods. Another survey that 

touched on this approach, although superficially, was Gures et al [8], while the others did 

not mention it at all. The survey of [1] presented many interesting context-aware load 

balancing solutions such as the one offered by [15], where the authors used Twitter for 

geolocating the occurrence of events, such as festivals. For this, they divided the region 

they wanted to monitor into smaller regions of interest inside of which they can establish 

the pattern of crowds. Next, they established the regularity of crowd behaviors in the 

regions of interest using historical geo-tagged tweets and finally, they detected the 

appearance of events in a test data set by comparing it with the established regularity.  

Another interesting work is the one made by [16], where the popularity of YouTube 

videos is predicted for content-aware proactive caching, as popular content generates a 

big portion of the load in the network. For predicting the popularity of videos, a set of 

features are extracted from the videos and stored in a vector. Prediction models are then 

applied to these features. The goal of proactive caching is to alleviate the load stress of 

the network by storing frequently-accessed data in base stations (BSs) near the users.     
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5   Methodology 
 

5.1 Systematic Literature Review 

The Systematic Literature Review (SLR) was performed following the methodology 

established by [17]. The review begins with the planning stage in which we want to 

understand the current state of the research problem. For this, a set of research questions 

was defined to properly characterize the research problem we wish to explore with our 

study. These questions are: 

1 What machine learning algorithm was used for the load balancing process? 

2 In which type of geographical and use case scenario (urban, rural) is the network 

operating? 

3 What social data was used for the load balancing process? 

4 What parameters were optimized by the ML algorithm? 

 

The second stage is the development of a review protocol where a set of inclusion and 

exclusion criteria for the review is established, as well as parameters for organizing the 

results of the review. The inclusion criteria for this work are: 

• Only papers published between 2015 and 2022 will be considered.  

• Only papers that include the words machine learning, mobile load balancing, 

context-aware, or social-aware in the title, keywords or body text will be 

included. 

 

On the other hand, the exclusion criteria are: 

• Papers dealing with MRO, CCO, self-configuration, and self-healing will not be 

taken into account. These are concepts of SON related to load balancing but are 

not synonymous. 

• Papers outside of the publication range defined in the inclusion criteria will not 

be considered. 

• Documents that are not scientific papers. 

• Papers outside of the field of computer science and engineering. 
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The final stage of the SLR is conducting the review, taking into consideration the review 

protocol. The most relevant works found using this method are presented in the next 

subsection.  

 

5.2   Reviewed Works 

5.2.1   Mobility Management Based on Reinforcement Learning 

In 2015, Simsek et al. [18] proposed two approaches for Mobility Management (MM) 

and a context-aware UE scheduling method for HetNets, based on the use of 

reinforcement learning algorithms. The authors seek to provide both a long and short-

term solution for the optimization of the HO parameters between macro and picocells. 

Their contributions can be described as follows: 

• They proposed a set of MM methods that focus on long-term and short-term 

optimization solutions for HetNets. As a long-term solution, two reinforcement 

learning load balancing approaches are proposed, while a UE scheduling 

method is used as a short-term solution. 

• The two long-term load balancing methods are first, a Multi-Armed Bandit 

(MAB) learning approach and second, a satisfaction-based learning approach. 

• The short-term solution is implemented through a context-aware scheduler that 

employs the throughput history and the velocity of the UE as context data. 

The objective of these solutions is to maximize the rate of the network.  

 

The context-aware scheduler for short-term MM operates in the following manner: For 

each Resource Block (RB), a UE is chosen to be served by a BS in a given RB. The 

candidate UEs are sorted by their velocity, choosing first the UE with the slowest velocity 

in order to avoid favoring high-velocity UEs over slow ones [18]. For preventing the 

scheduler from allocating most of its resources to a newly handed over UE, the macro 

and picocells communicate between them through the X2 interface, so that when a UE is 

handed over from a microcell to a picocell, its rate history is provided to the picocell in 

terms of average rate.  
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On the other hand, both of the long-term MM solutions are implemented by considering 

a game in which the BSs are the players and there is a set of actions they can take at every 

optimization step. In addition, each player has a utility function. The players learn how 

to optimize their load by following the next steps: 

1. An action is chosen based on the utility function, which takes into account the 

total rate of the player at that moment. 

2. The strategy for choosing the action is updated based on one of the two 

reinforcement learning algorithms that are proposed by the authors.  

3. The newly handed-over UE is given a RB taking into account its velocity, 

average rate, and instantaneous rate in accordance with the context-aware 

scheduler described before. 

 

The first reinforcement learning algorithm for long-term MM is the MAB.  The elements 

used for the operation of this algorithm are as follows: 

• The players are the macrocells and the picocells of the network.  

• The actions are a set of Cell Range Expansion (CRE) bias values in dB that the 

macro and picocells can adopt.  

• The utility function of the algorithm is a decision function composed of a term 

representing the total rate of a player and a term that takes into consideration the 

number of times an action has been chosen until that moment.  

 

Considering all these elements, the MAB operates in the following manner: 

1. In the first optimization step, a player selects each action in a random 

manner for initializing the learning process by receiving a reward for each 

action.  

2. After the initialization, the player selects an action that maximizes the 

decision function.  

3. Next, the player updates the parameters of the decision function based on 

the change in its cumulative reward produced by the chosen action.  

4. Repeat step 2. 
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The second algorithm for MM optimization is a satisfaction-based learning approach. 

These approaches seek to guarantee the satisfaction of the players in a system [19]. In this 

case, the player is considered to be satisfied if it reaches a minimum level of total rate and 

if at least 90% of the UEs in the cell receive a certain average rate. 

 

In this algorithm, the set of players and actions are the same as in the MAB approach. 

The utility function is the load of the cell. The actions are selected according to a 

probability distribution in the following manner: 

1. During the first learning iteration, the probability of each action is equal and an 

action is chosen at random. 

2. After the initialization iteration, the BS changes its action selection strategy only 

if the received utility does not meet the satisfaction criteria.  

3. If the satisfaction condition is not reached, the player chooses an action based on 

the probability distribution.  

4. A reward is given to the players based on the selected actions.  

5. Finally, the probability of the chosen action is updated using a linear reward-

inaction scheme.  

 

System level simulations were carried for assessing the performance of the proposed MM 

solutions. The results show that the proposed approaches improve the performance of the 

network compared to traditional solutions. With these methods, the average UE 

throughput is increased by 80% and the handover failure is reduced by a factor of three 

[18].          

 

5.2.2   A Markov Chains Model for the Development of Context-Aware HO Policies 

In 2015, Guidolin et al. [20] developed a model based on a discrete-time Markov Chain 

(MC) to characterize the HO process of a mobile user and employ it as a base to derive 

optimal context-aware HO policies for increasing the performance of the user. In their 

approach, the authors begin by introducing a model that describes the operation of a UE 

along its moving trajectory inside a representative HetNet scenario. This model is then 
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used to derive an expression for the average performance of the UE as a function of the 

HO parameters and other context parameters such as the velocity of the UE, the power of 

the macro and femtocells, the load of the cells, and the channel model. Finally, the model 

is used for deriving a context-aware HO policy (CAHP) for optimizing the HO parameters 

with respect to the gathered context information. 

 

The considered HetNet model consists of a macro-BS (M-BS) and a femto-BS (F-BS) 

separated by a certain distance and that use the same frequency band. Despite the 

simplicity of this approach, it is capable of describing the most fundamental aspects of 

the HO process in HetNets. Furthermore, it can be generalized to more complex scenarios. 

In this configuration, the UE moves in a straight trajectory from the M-BS to the F-BS at 

a constant speed.    

 

The propagation model used is the path-loss plus fading propagation model. It has to be 

noted that fading can cause an improper triggering of the HO process, producing the ping-

pong effect.  

 

The authors considered that the HO process is executed as modeled by the 3rd Generation 

Partnership Project (3GPP). The HO is started by the UE, which is periodically measuring 

the Reference Signal Received Power (RSRP) from the surrounding cells. When the UE 

detects that the difference between the RSRP of the serving and target cells drops below 

a certain HO hysteresis value λth, a timer known as Time-to-Trigger (TTT) is initialized 

to a certain value T and the countdown begins. If the RSRP difference comes back to be 

higher than the HO hysteresis threshold, then the countdown stops and the HO is aborted. 

On the other hand, if the difference remains below the threshold for the complete duration 

of the interval T, then the UE disconnects from the serving cell and connects to the target 

cell. This is known as the A3 event [21].  

 

The next step in the modeling of the HO process is to determine an expression for the 

mean trajectory performance of the UE while it is moving from a M-BS to a F-BS. This 

derivation starts by considering that at any point of its trajectory, the connection state S 

of the UE can be defined as M, F, or H depending if the UE is connected to the M-BS, 

the F-BS, or if is temporarily disconnected because is executing the HO process. The 

obtained mean trajectory performance expression is proportional to the connection state 
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S at any point of the trajectory and to the performance experienced by the UE. In this 

work, the performance experienced by the UE is expressed in terms of the Shannon 

capacity, however, it can be generalized to use different performance metrics such as the 

HO failure rate or the ping-pong rate. During the HO process, the UE experiences many 

connection costs related to signaling. Because of this, it is assumed that during the HO 

the UE experiences zero capacity. 

 

The computation of the mean trajectory performance is complex due to the fading 

process. The solution for this issue was to replace the continuous time model with a 

slotted-time model. In this way, the trajectory of the UE is analyzed at periods separated 

by the fading coherence time Tc. From the period of every time slot, it is possible to obtain 

the spatial granularity of the model.   

 

The HO process is modeled as a non-homogeneous discrete-time Markov chain (MC). 

The modeling starts by denoting as NT and NH the number of space slots traveled by the 

UE during times T and TH respectively. The states that represent the connection of the UE 

to either a M-BS or F-BS are denoted by the sets Mj and Fj respectively, where j ∈ {0, …, 

NT}. In the same manner, the states that represent the HO process of the UE are 

represented by the sets Hj and Ĥj, in which j ∈ {1, …, NH}. The set Hj represents the 

handover from a macro to a femtocell, while the set Ĥj represents the handover from a 

femto to a macro cell.  

 

When the UE is connected to a M-BS and enters the TTT period, it enters to the set of 

states Mj. The UE will evolve from the state Mj to Mj+1 while the RSRP difference is 

below λth, otherwise, the TTT timer will reset and the UE will come back to the state M0. 

On the other hand, if the RSRP condition is maintained until the state MNT is reached, the 

UE will initialize the HO process and will enter the H1 state. All the steps of the HO will 

be deterministically passed until the final state HNH. After this, the UE will connect to the 

F-BS and it will enter to the state F0, which means that the HO process has been 

successful. The evolution of the MC for switching from the F-BS to the M-BS is 

conceptually the same.  Figure 1 depicts the MC model that describes the HO process.    

 

If the target cell is partially loaded, then a HO based only in the RSPR may yield poorer 

results than simply staying in the current cell due to the traffic load.  To account for the 
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traffic load, the RSRP-based HO procedure described previously can be maintained, 

while the Cell Individual Offset (CIO) can be modified to account for different traffic 

loads. In practice, this translates to defining a new threshold λth
S,load that is dependent on 

the load of both the M-BS and F-BS, respectively. 

 

 

Figure 1. Discrete-time MC for modeling the HO process of a UE with arbitrary NT and NH. Taken from 

[20]. 

 

The threshold choice determines the characteristics of the load-aware HO algorithm [20]. 

A good approach for determining this threshold would be to adapt it in such a way that 

the relative performance gain experienced by the UE, when changing cells, remains 

constant.  

 

The developed mathematical model can be used to derive a context-aware HO policy 

(CAHP). The context data used by the model are the transmit power of the cells, the path 

loss coefficients, the inter-BS distance, the carrier frequency, the UE velocity, and the 

load of the cells. The idea of the CAHP is to find the optimal TTT value that maximizes 

the average performance of the UE when crossing from one cell to another. The TTT 

value depends on the current context parameters, which are assumed to be known by the 
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UE. Pilot signals can carry some of the needed context information such as the cell load 

conditions, while others can be obtained from the UE itself, like the UE speed, which can 

be gathered from the GPS of the device.  

 

In order to find the best TTT for a certain set of context information, the authors explored 

the change in the capacity experienced by the UE as they varied the context parameters. 

With this approach, they found that for low speeds of the UE, larger TTT periods are 

needed to avoid the ping-pong effect. In contrast, for very high UE speeds, the best policy 

is to avoid the HO completely, since the loss of capacity due to the signaling of the UE is 

not balanced by the capacity gain of connecting to the F-BS. Now, the speed threshold 

over which the best policy is to skip the HO depends on the size of the F-BS. For large 

cells, the HO losses are balanced by the gain in capacity obtained by connecting to the F-

BS. For lower speeds, the optimal TTT depends on the UE speed but its independent of 

the size of the cells.   

 

These conclusions were implemented in a CAHP algorithm that adapts the TTT of the 

UE in accordance with the measured context values. To evaluate the performance of this 

algorithm, a series of simulations that compared the results yielded by this method against 

the results given by fixed TTT policies were executed. From these simulations, it is 

evident that the CAHP outperforms the results of the fixed TTT policies and demonstrates 

that context-awareness can improve significantly the HO process.  

 

5.2.3   A Framework for Context-Aware Self-Optimization 

In 2016, Aguilar-Garcia et al. [22], proposed a framework for context-aware self-

optimization (CA Self-Optimization) whit the objectives of 1) increasing the number of 

satisfied users despite the changes in the radio conditions of the cellular network and 2) 

converging to an optimal network status in the shortest time possible. Next, the authors 

also describe a load balancing use case based on the proposed framework and then 

proceeded to validate it through a simulation.  

 

The CA Self-Optimization framework is based on the inclusion of a Context-Aware 

Module (CAM) for enhancing the capabilities of traditional self-optimization SON 

algorithms, by providing them with context information, in addition to traditional network 
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KPIs. The CAM is able to collect context information from multiple data sources 

including personal devices, location systems, social networks, image/video, inputs by 

manual users, and other data sources. Depending on the type of data used, the CA self-

optimization algorithm can run at various time intervals, including 1 h, 30 min, 15 min, 5 

min, 1 min, and can even allow the making of predictions about the status of the network.   

 

The CA Self-Optimization framework is used to enhance a load balancing algorithm 

based on a FLC. The block diagram of a FLC is shown in Figure 2. The authors explored 

two load balancing algorithms based on FLCs: the Power Traffic Sharing (PTS) 

algorithm, and the Power Load Sharing (PLS) algorithm. These algorithms work in the 

following manner:  

• PTS: In the first method, the FLC inputs are: 1) the difference between the 

cell’s blocked calls and the average of the neighboring cells' blocked calls 

and 2) the FLC's own output used as feedback. The FLC optimizes the load 

sharing between the cells by adjusting their transmission power. This 

algorithm is run periodically per small cell. 

• PLS: The inputs of this algorithm are 1) the number of slots used per 

Physical Resource Block (PRB) over the total available slots per PRB and 

2) the feedback of the FLC. Its output is the same as the previous algorithm. 

This method is run periodically per small cell.    

The variation in the transmission power produced by these methods is limited to the 

small-cell power range, i.e., from 0.016 mW to 250 mW. 
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Figure 2. The general fuzzy logic controller-based load balancing algorithm. Taken 

from [22]. 
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For the integration of the CAM with the load balancing algorithm, both processes work 

as separate modules. The CAM collects and classifies the context information and the 

FLC provides an optimization action based on the KPIs of the network. The combination 

of the outputs of each module is done through the implementation of a new module called 

Integration Module (IM). The IM analyzes the context information and decides if the 

output of the load balancing algorithm is applied to the network or modified. The 

integration of the load balancing (LB) and CA modules is depicted in Figure 3. The IM 

structure comprises five modules: a filter, a prediction database, an analyzer, a decision 

maker, and an acceleration function. Figure 4 illustrates this structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The filter selects the context information relevant to the chosen load balancing method 

and eliminates non-useful data. This data is forwarded to the analyzer, while data that can 

Optimization 
Output 

Context-

Aware 

Module 

Load Balancing 

Algorithm 

Integration 
Module 

Social information sources: personal 
devices, location systems, social 
networks, images/videos, manual 
user’s input, other sources. 

Small-cell network KPIs 

Context 

Information 

LB 

Output 

Optimization 

Output 

Prediction 

Database 
Filter 

Analyzer 
Decision 

Maker 

Acceleration 

Function 

Figure 3. Integration scheme of the LB algorithm and the CA module. Taken from [22]. 

Figure 4. Architecture of the IM. Taken from [22]. 
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provide information about future events is stored in the prediction database for future use. 

The analyzer determines if the evaluated cell is congested and if there is a high 

concentration of users close to the edge of the cell. When there is a similar received power 

from the serving cell and another neighboring cell, it can be deduced that a user is located 

at the cell border [22]. The outputs of the analyzer are the following:  

• When the evaluated cell is a congested cell or the nearest neighbor of a congested 

cell, then the output value is 1. 

• In the case that the cell is a neighboring cell of a congested cell, the output value 

is 0. 

• Otherwise, the output is set to -1. 

Both the output of the analyzer and the acceleration function is fed to the decision maker 

for determining the output of the CA load balancing algorithm. The acceleration function 

multiplies the LB algorithm output by a certain factor. In the case proposed by the authors, 

the acceleration function is a step function. According to the outputs of the analyzer, the 

outputs of the decision maker are as follows: 

• 1: the output of the LB algorithm is doubled. 

• 0: no variation is applied to the output of the LB algorithm. 

• -1: the LB algorithm output is canceled. 

The proposed load balancing method was tested using the dynamic system-level LTE 

simulator described in [23]. The results of the CA self-optimization show an important 

improvement in performance relative to the traditional load balancing methods. The 

convergence of the algorithm is reduced by approximately 50%, and the number of 

dissatisfied users is reduced by improving the UDR indicator.    

 

5.2.4 Context-Aware-Driven Proactive Load Balancing 

In 2020, Ma et al. [3] presented a context-aware proactive load balancing method for 

optimizing the load share of cellular networks in urban areas. This work made 

contributions in three aspects of the load optimization process: first, they introduce a 

method for detecting hotspots in the network caused by massive assistance events, with 

the use of Twitter data. Second, a load balancing method that employs the data of the 

hotspot-detecting method is described. Finally, this load balancing method is optimized 
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with the introduction of an algorithm for establishing the best activation time of the LB 

method. 

 

Before discussing the mentioned contributions in detail, the authors explained the 

operation framework of their context-aware proactive load balancing method. The 

framework is composed of two functional blocks, data sources and context-aware 

proactive network optimization. The data sources contain the necessary data for the 

operation of the load balancing method, whereas the optimization block is divided into 

four functions: social data collection, social data filtering, 3-stage data analytics, and 

proactive optimization. This framework is visualized in Figure 5.  

 

The objective of the social data collection function is to capture raw tweets from the 

internet to pre-process them and produce a formatted data set. Next, the social data 

filtering module is designed to eliminate irrelevant data and to provide an appropriate 

numeric expression of this information. With this data, it is possible to forecast the 

occurrence of traffic hotspots due to the appearance of social events in the network. A 3-

stage data analytics function that employs machine learning and statistical methods is 

used for extracting the context of the data. The first stage of this function produces a 

spatial traffic pattern by dividing the urban area into various Regions of Interest (ROI), 

for modeling the traffic in each of them. The division of the ROIs is made with the use of 

the Density-based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. 

The second stage is the hotspot detection, which is implemented by counting the Tweets 

in the pixels of each ROI; the areas with a high count of Tweets are defined as hotspots. 

The traffic distribution in the ROIs is not static, but it changes with time. The last stage, 

the anomaly detection, aims to forecast the time and location of new hotspots when social 

events occur. This is done in two steps: 1) By modeling the regularity of the traffic with 

a training data set and 2) by finding outliers in the modeled regularity. In this work, the 

number of Tweets per hour is used as the indicator of traffic changes in the network.   
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Figure 5. The framework of the proactive network optimization. Taken from [3]. 
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The proactive optimization function has the objective of optimizing the load sharing by 

taking into consideration the hotspots identified by the 3-stage data analytics. This 

function consists of four main stages: 1) The irregularity check, which is used to avoid 

false alarms generated by the anomaly detection function. 2) The network model, which 

is required to simulate the network operation in accordance with the context. The network 

model is used for assessing the profit and the cost of the possible optimization. 3) The 

decision maker which uses fuzzy rules for optimizing the cell margins following the 

forecasted hotspots. 4) The activation time which has an important impact on the results 

of the proactive optimization. The earlier the optimization is activated, the better, but it 

comes at the cost of an increased number of errors. To account for this, an algorithm to 

determine the best activation time is presented.   

 

The authors tested their framework by simulating an urban network deployment in 

London. Their simulation considers the occurrence of a social event that gathers a great 

number of users in a cell; the number of users in the hotspot increases from an initial time 

t1 to a moment of high load t2. There is also a hotspot with a medium amount of load that 

represents common gathering places such as commercial areas. A Monte Carlo simulation 

was executed to evaluate the performance of the users with no load balancing algorithm, 

with a classical reactive load balancing algorithm, and with the proactive context-aware 

load balancing algorithm. The simulation shows that the proactive load balancing 

algorithm outperforms the classical alternative at maintaining the performance of the 

users and convergences to a solution much faster thanks to its forecasting characteristics. 

The simulation also shows the importance of the activation time of the optimization 

process for converging in a quick manner.  

 

5.2.5   Social-Aware Optimized Fuzzy Logic Controller  

In 2021, Torres et al. [14] proposed a load balancing method based on an FLC that 

implements classical load balancing plus a social-aware algorithm for achieving a more 

balanced load-sharing. This solution uses a baseline FLC that employs fuzzy rules and 

Boolean logic for regulating the transmission power of the cells, by applying the Power 

Traffic Sharing algorithm (PTS).  
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The FLC uses two input variables from the cellular network, the load difference between 

cells (loadDiff) and the transmission power deviation for each cell (ΔPtx), for computing 

the possible variation of the power of each cell (output value). After the first controller, a 

second algorithm called Social-Aware PTS (SAPTS) controller is implemented. The 

SAPTS algorithm uses two inputs for its operation: the first one is the radio distance 

between the location of a venue where a social event will take place and a close cell, 

whereas the second input is the azimuth of each cell located at the same site as the venue. 

The event location is determined by using a social-aware unit for detecting the location 

of user crowds in venues.  The SAPTS algorithm also adjusts the rate of the power 

adjustment based on the radio distance; when the venue is near the cell edge, the 

transmission power change is slow, and when the venue is far from the cell edge, the 

transmission power changes are faster. In Figure 6, the architecture of the SAPTS 

algorithm is shown. 

 

This load balancing method was tested in a simulation where the venue was located both 

in the center of a cell and at the edge of the cell. The results showed that a better sharing 

of UEs between cells is obtained when the social-aware algorithm is used together with 

the classical FLC balancing method, compared with the use of only the FLC. The 

proposed solution makes a differentiation between the use of machine learning methods 

for gathering, filtering, and analyzing the social information and the use of machine 

learning methods for improving the functionality of the load balancing system; in this 

context, the authors did not go in depth in the process used for gathering the social data, 

instead only mentioning that there are many online social sources from where to collect 

it. The authors also proposed as future work the use of more detailed mobility models for 

simulating the movement of the users in the area of the venue. 
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Figure 6. Architecture of the PTS and SAPTS algorithms. Taken from [14]. 



 

27 
 

5.3   Characterization of a Mobile Test Environment 

In this section, we will characterize a mobile test scenario over which we can evaluate the 

reviewed social-aware ML-based load balancing methods. This scenario is based on the 

guidelines of Report ITU-R M. [IMT-2020.EVAL] [24]. This report defines five different 

test scenarios based on the geographical environment and usage scenarios [24]. These 

scenarios are: 1) Indoor Hotspot-eMBB, 2) Dense Urban-eMBB, 3) Rural-eMBB, 4) 

Urban Macro-mMTC, and 5) Urban macro-URLLC. For this work, the Dense Urban-

eMBB test environment was chosen, which is defined as “An urban environment with 

high user density and traffic loads focusing on pedestrian and vehicular users” [24]. The 

main parameters that this work has considered for modeling the test Dense Urban-eMMB 

environment are shown in Table 2.  

 

Table 2. Parameters of the Dense Urban-eMBB test environment. 

PARAMETERS CONFIGURATION 

Cellular layout Hexagonal grid, 57 cells (3x19 sites) ISD = 0,5 Km 

Total Users 1980, Venue User = 900, Random Users = 1080 

Cellular area 4 Km2 (2000 m x 2000 m) 

Transmission direction  DL 

Carrier frequency  4 GHz 

System bandwidth 20 MHz 

Frequency reuse 1 

Propagation model  Shadow fading distribution: log-normal (σSF = 6) 

Channel model  Multipath fading, EPA model 

Mobility model  Waypoint, constant speed = 3 Km/h 

Service model Data traffic (full buffer) 

Base station model Tri-sectorized antenna, MIMO 8x8, EIRPmax=47 dBm 



 

28 
 

Scheduler  Round Robin - Best Channel 

Power control  Equal transmit power per PRB 

RRM features  Radio Distance (venue-cells), HO margin 

Mobility pattern Log-normal distribution 

 

 The parameters of the table will be described next for a better understanding of them: 

• The cellular layout is the physical disposition of the BSs in the test scenario. In 

this case, 19 places are located in a hexagonal layout. In each site, there is a BS, 

and each BS is equipped with three radiating elements, producing 3 cells in each 

site. Therefore, there is a total of 57 cells in the test environment. The inter-site 

distance (ISD) is the distance between adjacent sites [25].  

• The parameter of total users is the total number of subscribers inside the coverage 

area of the test scenario. In our example, there are 1980 users connected. From 

this, 1080 users are random and 900 users are venue attendees. In other words, 

these 900 users have gathered in a venue for attending a massive social event such 

as a sports match, a concert, or a festival. 

• The cellular area is the total coverage area of the test scenario. In this case is 4 

km2. 

• Transmission direction is the direction of the flow of data, whether it is from the 

BS to the user or from the user to the BS. In the proposed scenario, only the 

downlink (DL) is taken into consideration. 

• Carrier frequency is the frequency used for data transmission. 

• System bandwidth refers to the bandwidth of the used carrier. As the carrier is 

centered at 4 GHz, the system bandwidth has a range of 3.99 GHz – 4.01 GHz.  

• Frequency reuse is the method for selecting and allocating frequency channel 

groups for all the BS within a cellular system [26]. A frequency reuse factor of 1 

means that all the BSs share the same frequency channel group.  

• A propagation model is a mathematical model for characterizing the propagation 

of radio waves through space. The propagation model used in the test environment 

is the log-normal shadowing model.  
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• A channel model is a mathematical model characterizing the effects of the 

communication channel trough which the wireless electromagnetic signals will 

propagate [27]. For the test environment, the multipath fading channel model 

known as Extended Pedestrian A model (EPA) is used. 

• A mobility model is a mathematical model for characterizing the mobility pattern 

of the UEs in a network [28]. The random waypoint model is one of the most 

popular mobility models [29]. 

• Service model refers to the type of service being delivered by the network. The 

proposed service model focuses on packet data traffic (full buffer). 

• In base station model, the main parameters of the BSs are defined. These 

parameters are the number of antennas of the BS, the type of antennas, and the 

transmission power.  

• Schedulers are algorithms for distributing the capacity of the network among the 

existing UEs [30]. In the test scenario, the algorithms round-robin and best 

channel are used. 

• Power control is the process of regulating the transmission power in order to 

achieve a good signal level. For the test scenario, the transmission power is 

equalized among the PRB.  

• Radio Resource Management (RRM) is the management of radio transmission 

parameters in a wireless communication system. The most relevant features for 

our test environment are the radio distance between the venues and the cell and 

the HO margin.  

• A mobility pattern describes how the users move inside a network. Real mobility 

patterns can only be obtained by tracking the movement of objects in the real 

world, unlike mobility models which are mathematical models that seek to 

describe these patterns [28]. The mobility pattern of the test scenario is the log-

normal distribution. 
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6   Results 
 

The previously described network optimization approaches aim to solve the load 

balancing problem in the context of SON. With the use of machine learning tools and 

context-aware information, they reportedly outperform classical methods of load 

balancing. In this work, we would like to answer the question of which one of these 

approaches is the most suitable to be implemented given a certain application scenario.  

 

It is important to understand that a priori there is no better load balancing method. The 

choice of the algorithm depends heavily on the configuration of the cellular network and 

in the use case. For choosing a MLB algorithm to be used in a real-world deployment, the 

following criteria should be considered: 

• The cellular network layout and operation parameters. 

• The input parameters of the algorithm. 

• The output parameters of the algorithm. 

• The use case. 

With these criteria, it will be decided which of the explored algorithms is the most suitable 

to be implemented in the test scenario. 

 

6.1   Comparison of the Load Balancing Algorithms             

Refer to Table 3 at the end of this section. There, a comparison is made between all the 

surveyed MLB algorithms and the test scenario using the established analysis criteria. 

The parameters of the system model provided by the authors do not match completely the 

ones of the test scenario, therefore, some of the parameters are not taken into 

consideration. Table 3 contains only the parameters that are mentioned by the authors in 

their respective works. 

 

6.1.1   The Cellular Network Configuration  

The authors of the researched methods tested their proposals in different types of system 

models. The task here is to asses which of these models has the closest parameters to the 



 

31 
 

ones of the test environment, with the idea of evaluating which algorithm would be the 

easiest to be applied in the test scenario. 

 

[18] developed their algorithms in a scenario comprised of a set of tri-sectorized 

macrocells placed in a hexagonal pattern and a set of picocells scattered randomly inside 

the macrocells. This scenario is too general as to be compared with our test scenario, 

however for validating their approach, the authors carried simulations in a network model 

consisting of one microcell, with an inter-site distance of 500 m, and three picocells 

randomly distributed inside the macrocell. The BSs use a frequency reuse factor of 1. 

This configuration is too simple in comparison with the urban eMBB test scenario and it 

is smaller in scale both in the number of BS and in the extension of the network. 

Nevertheless, when it comes to similarities, their base station model is consistent with the 

test scenario due to the use of a tri-sectorized antenna. They also focus on the downlink 

channel for their analysis and take into consideration shadowing effects just like the 

propagation model of our scenario. 

 

The scenario proposed by [20] is very different from our test scenario. Their scenario is 

composed of a single macrocell-femtocell pair, separated by a certain distance and 

operating at the same frequency. This simple, tough useful model, does not take into 

account most of the parameters defined in our Urban Macro eMBB system, and although 

the authors present a framework on how to generalize their model to more complex 

scenarios, the results of their CAHP algorithm are not applied to this generalization. Their 

propagation model is also different than ours, as they use a path-loss plus fading 

propagation model. In addition, the mobility model is based on a straight-line trajectory 

that begins in the macrocell and can enter the femtocell from any direction; this is very 

different from the waypoint mobility model used by our test scenario. The similarities 

between the two models include the use of a frequency reuse factor of 1 and an analysis 

centered on the downlink channel with a bandwidth of 20 MHz.   

 

[22] proposed a framework for using social-aware information in load balancing 

mechanisms for small cell scenarios. As a framework, their approach is given in a general 
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manner to be adapted to various scenarios with different types of context-aware data, load 

balancing mechanisms, and cellular network configurations. However, to prove the 

validity of their framework, the authors presented a simulation performed on a scenario 

composed of four small cells that serve four different areas of a shopping mall. A unique 

tri-sectorized macrocell is added for completing their test environment. This simple 

model does not fit the layout of our test scenario neither in the number of cells nor in the 

coverage size. Nevertheless, there are two similarities between the scenarios: the first one 

is the use of a frequency reuse factor of 1 and the second one is the application of the 

waypoint mobility model for characterizing the movement of the users inside the 

corridors of the shopping mall.    

 

In the work of [3], the authors proposed a network model consisting of an urban ultra-

dense small cell deployment for the city of London. This network is a heterogeneous 

network model, where the analysis is focused on the downlink and has a cell density of 

80 cells/km2.  The channel model is a free-space channel with a bandwidth of 5 MHz and 

a frequency carrier of 5 GHz. The cellular area is a square with a size of 500 x 500 m. 

During the simulation of this network, near its center, there is a hotspot cell that will have 

a high load due to the occurrence of a social event. In this hotspot, the number of users 

grows from 18 UEs initially to 377 UEs. There is also a regular load hotspot with 78 UEs. 

The cellular area and the amount of the UEs considered for the simulation of this work 

are much lower than the amount of UEs established for the test scenario. The service 

model of this work is based on data traffic like in our test scenario.   

 

[14] proposed the most similar network scenario to our test scenario. The authors tested 

their social-aware PTS-based algorithm in a network deployment with 5G radio 

parameters. The deployment consists of 19 macro-BSs that were positioned in a 

hexagonal pattern, with three sectors per site and separated by an inter-site distance of 

500 m between them, covering a total area of 500x500 m. The layout of this network is 

in accordance with the layout of the test scenario except for the extension of the covered 

area. Another similarity between the scenarios is the radio parameters as the channel uses 

a frequency carrier of 4 GHz and a bandwidth of 20 MHz. The mobility model of this 



 

33 
 

work is different because the authors use the HADUMM model, although the speed of 

the UEs is the same as in the test scenario, 3 km/h.  

 

Even though many parameters are considered by the test scenario that are not considered 

or mentioned by the reviewed works, they can be assumed as part of the analysis of the 

reviewed works. For example, as the goal of the MLB algorithms is to ensure a proper 

QoS for the users in loaded cells, the analysis of the transmission direction must focus on 

the downlink rather than the uplink. Using the same logic, the following parameters have 

been assumed for all of the works: the evaluated transmission direction is the downlink, 

the frequency reuse factor of the network deployment is 1 and the service model of the 

network is data traffic.  

 

6.1.2   The Input Parameters of the Algorithms       

The choice of a MLB algorithm is not limited only to the analysis of the configuration of 

the network, but also to the availability of the input parameters needed by the algorithms 

to operate. The reviewed works use both classical and social-aware KPIs of which, due 

to the nature of this work, we are more interested in the latter.  

 

The works of [18] and [20] use the same time type of context information, the velocity of 

the UEs. In [20] the velocity of the users is obtained through the GPS of the UE, however, 

this poses a privacy problem for the users who have not consented to provide this data, 

making this method of acquiring the context information problematic. [18] does not 

mention how the velocity of the UEs is obtained, but common methods to determine this 

variable include Enhanced Cell Identity (E-CID), Observed Time Difference of Arrival 

(OTDOA), and LTE Positioning Protocol (LPP) [31].  

 

In the CA self-optimization framework of [22], the location, activity, time, and identity 

are regarded as the main context data for characterizing the situation of a particular 

network entity, such as the users. These context data may be collected from personal 

devices, location systems, social networks photo and video-sharing platforms, manually 
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introduced inputs, and various other sources. The generality of the context data proposed 

for the CA self-optimization framework does not allow easy comparison with the rest of 

the LB algorithms. However, for simulating their framework, the authors specified two 

sources of context data that we will use for carrying on our analysis; surveillance cameras 

with face-recognition technology for estimating the spatial distribution of the users and 

positioning systems. Similar to the collection of the velocity of the UEs by [20], both of 

the solutions used in this case pose a great privacy risk for the users, especially when 

using surveillance cameras with face-recognition technology.         

 

The works of [3] and [14] employ public online data for the implementation of their MLB 

algorithms. [3] gathered 600 000 geo-tagged tweets from London and analyzed their 

geolocation, time, and text. On the other hand, [14] does not mention a specific type of 

social data for their algorithm, but it is stated that the internet provides an abundance of 

social data sources including social networks, calendars, open databases, browsers, event 

aggregators, etc. The advantage of public online data is that it is shared voluntarily by the 

users through their online social interactions, meaning that it is open for collection and 

exploitation. An example of this is when a person announces the attendance of a social 

event on Facebook.    

 

6.1.3   The Output Parameters of the Algorithm 

The output parameters are the network parameters tuned by the MLB algorithm for 

controlling the HO of a user, depending on the load of the origin and destination cells. 

When choosing a MLB algorithm to be implemented, it is fundamental to consider its 

output parameters. 

 

The reinforcement learning algorithms of [18] learn how to adjust the CRE bias of the 

macro and picocells at each iteration. The CRE bias values that the macrocell can adopt 

are Bm = [0, 3, 6] dB and the values of the CRE bias for the picocell are Bp = [0, 3, 6, 9, 

12, 15, 18] dB.  The CAHP algorithm of [20] aims to find the optimal TTT value for the 

current context information of the network. By adjusting the TTT parameter, the network 

can regulate the triggering of the HO process. In the CA self-optimization framework of 
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[22], two MLB algorithms are discussed, the PTS and the PLS algorithms; however, the 

output parameter of both of these methods is the variation of the transmission power of 

the small cells. [3] tunes the HO margin of the BSs for offloading users from a loaded 

cell to an adjacent cell with free resources. Finally, in the proposal of [14], the parameter 

that is adjusted is the transmission power of the cell, based on the distance between the 

venue where a social event is happening and the cell.    

 

6.1.4 The Use Case of the LB Algorithm 

A cell is overloaded when it has to provide service to more users than its available 

resources; this comes with a substantial decrease in the QoS of the users. There are 

different instances of a cellular network where a hotspot produced by an overload can 

occur. For instance, during daily peak hours, the BSs can get overloaded due to the high 

user demand, but the cell of a network can also become overloaded during massive social 

events, such as sports matches or concerts, due to the excess of users gathered in a specific 

location. 

 

For dealing with different instances of load balancing, the LB algorithms should be 

designed to be applied to different use case scenarios. This is reflected in the surveyed 

works where there are two different use cases in the MLB algorithms: the methods of [18] 

and [20] are focused on improving the MM of a cellular network while taking into 

consideration the load of the cells, whereas the works of [22], [3] and [14] seek to balance 

the load generated by the massive gathering of users in a venue due to the occurrence of 

a social event. 

 

The objective of MM is to track the location of the users inside the coverage area of a 

wireless mobile network in order to achieve ubiquitous communication [32]. A proper 

MM implementation will allow a smooth HO between cells without degradation in the 

performance of the UEs. As discussed before, the HO process takes into account 

parameters such as HO hysteresis margins, TTT, and the received power of the UEs for 

determining the appropriate moment to change the connection of a user from one cell to 

another. One problem of this approach is that executing the HO process without taking 
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into consideration the load of the target cell could reduce the performance of the UE, as 

the target cell may not have enough resources to serve the new UE, even though its RSRP 

could be higher than the one of the original cell. Taking this into consideration, it is 

possible to conclude that the works of [18] and [20] are not meant to solve the problem 

of load balancing directly, but they aim to increase the robustness of MM by taking into 

account the load of the BSs. The load balancing aspect appears as their algorithms prevent 

handovers to cells without available resources.  

 

The methods based on public online information of [22], [1] and [14] bring proactivity to 

the network by being able to forecast the occurrence of social events that can create load 

hotspots, as the users make clear their intentions through the information they share on 

the internet. In this way, these methods avoid the cold start problem that appears in 

classical MLB algorithms and can converge to a solution more quickly [1]. The use case 

for which these algorithms are intended is the optimization of the network when a massive 

gathering of users in a venue is forecasted and the network tries to distribute the users 

between adjacent cells during the duration of the event.  

 

6.2 Comparison Outcomes 

The analysis showed that the work of [14] has been tested in a scenario that is the most 

similar to the proposed Dense urban-eMBB environment. This is clearly shown in Table 

3, where the comparison between the analyzed ML algorithms is made. The work of [14] 

is tested in a system model that matches the Dense Urban-eMBB test scenario in the 

following aspects: 

• Cellular layout. 

• Transmission direction. 

• Carrier frequency. 

• System bandwidth. 

• Frequency reuse. 

• Propagation model. 

• Service model. 

• Base station model. 
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• Input data, and 

• Use case. 
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Table 3. Comparison of the reviewed social-aware load balancing algorithms with the test cellular scenario. 

 

 

ML Algorithms Authors 

Cellular 

layout 

Transmission 

direction 

Carrier 

frequency 

System 

bandwidth 

Frequency 

reuse 

Propagation 

model 

Mobility 

model 

Service 

model 

Base station 

model 
Input data 

Output data 

(RRM 

features) 

Use case 

Hexagonal 

grid, 57 

cells (3x19 

sites) ISD = 

0,5 Km 

DL 4 GHz 20 MHz 1 

Shadow 

fading 

distribution: 

log-normal 

(σSF = 6) 

Waypoint, 

constant 

speed = 3 

Km/h 

Data traffic 

Tri-sectorized 

antenna, 

MIMO 8x8, 

EIRPmax=47 

dBm 

Social online 

information 

HO 

hysteresis 

margin 

Load 

balancing of 

a massive 

social event 

Reinforcement 

learning-based 

MM (MAB and 

satisfaction-

based learning). 

[18] 

 ✓   ✓ ✓  ✓ ✓    

Markov Chain [20]  ✓  ✓ ✓   ✓     

Context-aware 

enhanced fuzzy 

logic controller 

[22] 

 ✓   ✓  ✓ ✓ ✓   ✓ 

BDSCAN + 

Fuzzy decision 

maker 

[1] 

 ✓   ✓   ✓  ✓ ✓ ✓ 

PTS + SAPTS [14] ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ 
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7   Discussion  
 

As stated previously, none of the explored MLB solutions has been tested in an 

environment that completely matches the characteristics of the proposed test scenario. 

Nevertheless, this is not necessary as a real practical network deployment will never have 

the same conditions and assumptions as a theoretical simulation. Instead, the system 

model must take into consideration the most important parameters for a proper 

characterization of the structure of a cellular network and its operation. With this 

consideration, in the hereby work we have taken into account: 1) the layout and operation 

parameters of the cellular network, 2) the input parameters of the MLB algorithm, 3) the 

output parameters, and 4) its use case, to properly characterize the application scenario of 

the ML load balancing algorithms. 

 

This characterization enabled a qualitative comparison between the algorithms for 

assessing the suitability of their application in a given cellular network deployment. The 

analysis showed that the algorithm of [14] is the one that possesses the most similarities 

with the test Dense Urban-eMBB deployment. This is because this work takes into 

consideration more parameters than the rest of the surveyed works for testing its 

algorithm, which allows it to be more easily generalized to a proposed application 

scenario. It has to be emphasized that this does not disprove or invalidate the findings of 

the rest of the works, but that their proposals have to be tested in a more detailed 

environment to improve the confidence that their results can hold in a real-life setting.   
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8   Conclusions 
 

• A qualitative comparison between various machine learning-based social-aware 

load balancing methods was performed by establishing a set of criteria for 

characterizing their application scenarios.  

• A systematic literature review was done to assess the state of the art about the use 

of ML and social-aware information for solving the load balancing problem in the 

context of SON. The literature review was conducted using the guidelines given 

by [17]. The systematic literature review started by properly defining the research 

problem through the proposition of research questions. Next, a set of inclusion 

and exclusion criteria for conducting the review was established and finally, the 

review was conducted taking into consideration the aforementioned criteria. 

Through this review, five MLB methods were selected for analysis.  

• A set of four parameters was proposed as criteria for characterizing the application 

scenario of the MLB algorithms, to allow a comparison between them. These 

criteria are 1) the cellular network layout and operation parameters, 2) the input 

parameters of the algorithm, 3) the output parameters of the algorithm, and 4) its 

use case. 

• The social-aware MLB solution of [14], based on the PTS and SAPTS algorithms, 

was chosen as the most suitable to be applied in a Dense Urban-eMBB test 

scenario.   
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9   Recommendations  
 

• The execution of a systematic literature review requires defining clear limits in 

the scope of the search for obtaining meaningful results. The search scope must 

be limited in time, specifying how old the works that will be reviewed may be. It 

also has to be limited in the scope of topics that must be reviewed; for this, it is a 

good practice to define a set of keywords to look for when doing a literature 

review and a set of keywords to avoid, as they might be related to the research 

topic but they are not the focus of the study. For performing a systematic literature 

review, it is recommended to follow the method of [17]. 

• Modeling a cellular network environment can be challenging as it contains a great 

number of variables for defining its structure and operation. The parameters of the 

network are also dependent on the environment where it will be deployed, whether 

it is an urban or rural setting. The main parameters of current NGMN such as LTE 

or New Radio are defined in the technical reports of the main organizations 

working for the standardization of this technology such as 3GPP, ETSI, and the 

ITU. These reports can be used as a starting point for easing the process of 

modeling a NGMN.     
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