

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE LA ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

CARRERA DE INGENIERÍA ELECTROMECÁNICA

TÍTULO:

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

TESIS DE GRADO PREVIA A LA OBTENCIÓN DEL TÍTULO DE INGENIERO ELECTROMECÁNICO.

AUTOR:

ANTHONY PAUL GUARNIZO GUAMAN

DIRECTOR:

ING. JORGE ENRIQUE CARRIÓN GONZÁLEZ, Mg. Sc.

LOJA-ECUADOR

2019

CERTIFICACIÓN

Ing. Jorge Carrión González, Mg. Sc.

DIRECTOR DE TESIS

CERTIFICA:

Haber dirigido, asesorado, revisado y corregido el presente trabajo de tesis de grado, en su proceso de investigación cuyo tema versa en "CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN" previa a la obtención del título de Ingeniero Electromecánico, realizado por el señor egresado: Anthony Paul Guarnizo Guaman, la misma que cumple con la reglamentación y políticas de investigación, por lo que autorizo su presentación y posterior sustentación y defensa.

Loja, 31 de enero de 2019

..... ********

Ing. Jorge Carrión González, Mg. Sc. DIRECTOR DE TESIS

AUTORÍA

Yo, ANTHONY PAUL GUARNIZO GUAMAN declaro ser autor del presente trabajo de tesis y eximo expresamente a la Universidad Nacional de Loja y a sus representantes jurídicos de posibles reclamos y acciones legales por el contenido de la misma.

Adicionalmente acepto y autorizo a la Universidad Nacional de Loja, la publicación de mi tesis en el Repositorio Institucional – Biblioteca Virtual.

Firma.

Cédula: 1104316425 Fecha: 31/01/2019

CARTA DE AUTORIZACIÓN DE TESIS POR PARTE DE LA AUTORA PARA LA CONSULTA, REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN ELECTRÓNICA DEL TEXTO COMPLETO.

Yo, ANTHONY PAUL GUARNIZO GUAMAN, declaro ser autor de la tesis titulada: "CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN", como requisito para optar el grado de: INGENIERO ELECTROMECÁNICO; autorizo al Sistema Bibliotecario de la Universidad Nacional de Loja para que con fines académicos, muestre al mundo la producción intelectual de la Universidad, a través de la visibilidad de su contenido de la siguiente manera en el Repositorio Digital Institucional:

Los usuarios pueden consultar el contenido de este trabajo en el RDI, en las redes de información del país y del exterior, con las cuales tenga convenio la Universidad.

La Universidad Nacional de Loja, no se responsabiliza por el plagio o copia de la tesis que realice un tercero.

Para constancia de esta autorización, en la ciudad de Loja, a los 9 días del mes de abril del dos mil diecinueve.

Firma: ..

Autor: Anthony Paul Guarnizo Guaman

Cédula. 1104316425 Correo Electrónico: tonyguanizo@gmail.com

Dirección: Loja (Calle Greco y Salvador Dalí)

Teléfono: 2541117 Celular: 0968029147

DATOS COMPLEMENTARIOS:

Director de Tesis: Ing. Jorge Carrión González, Mg. Sc.

Tribunal de Grado: Ing. Leonel Francisco Aleaga Loaiza, Mg. Sc. Ing. Carlos Mauricio Orellana Uguña, Mg. Sc. Ing. Julio Roberto Gómez Peña, Mg. Sc.

DEDICATORIA

A Dios y a la Virgen del Cisne por iluminarme, ayudarme, por darme fuerza y sabiduría para salir adelante y culminar esta etapa de mi vida.

A mis padres Leonardo Guarnizo y Jacqueline Guaman, por sus consejos y palabras de aliento para guiarme en el transcurso de esta etapa de mi vida; por cada uno de sus cuidados, confianza y por su apoyo incondicional que siempre han estado presente en el trayecto estudiantil. A ustedes por ser los mejores padres del mudo, por estar pendientes siempre de mí, les debo todo, por lo tanto, éste logro es por ustedes.

A mis hermanos, por ser las personas que de una u otra manera han estado presentes para brindarme su apoyo, cariño y extenderme su mano cuando más la necesitaba y por soportarme durante todos estos años. Para mí son la mejor familia que me pudo tocar y a ustedes les dedico cada uno de mis logros.

A todos los docentes que aportaron con sus conocimientos en mi etapa de formación.

AGRADECIMIENTO

Le doy gracias a Dios por permitirme tener tan buena experiencia dentro de mi universidad, a la Universidad Nacional de Loja por permitir mi formación en sus aulas y laboratorios, a todos los que hicieron posible con su apoyo, que logre, este, uno de mis grandes objetivos.

A toda mi familia, por su apoyo, consejos, palabras de aliento y sobre todo por la paciencia que me brindaron a lo largo de toda mi carrera.

De forma especial agradezco a mi director de tesis el ingeniero Jorge Carrión González que me ha orientado en el desarrollo de este trabajo de titulación, gracias ingeniero por todo su apoyo brindado durante este proyecto, por ayudarme a ver mis errores y despejar mis inquietudes.

A la Empresa Eléctrica Regional del Sur S.A. por brindarme la oportunidad de realizar mis prácticas pre-profesionales en sus instalaciones.

Finalmente quiero agradecer a todos los docentes de la carrera de Ingeniería Electromecánica que impartieron sus conocimientos durante estos años de formación profesional, y a mis compañeros con quienes compartimos este proceso de formación, gracias por todo.

TABLA DE CONTENIDO

CERTIFICACIÓN	II
AUTORÍA	III
CARTA DE AUTORIZACIÓN DE TESIS POR PARTE DE LA AUTORA PAR CONSULTA, REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN	ALA
ELECTRÓNICA DEL TEXTO COMPLETO.	IV
DEDICATORIA	V
AGRADECIMIENTO	VI
TABLA DE CONTENIDO	VII
1. TÍTULO	1
2. RESUMEN	
2.1. ABSTRACT	4
3. INTRODUCCIÓN	6
4. REVISIÓN DE LA LITERATURA	8
4.1. TRANSFORMADORES	9
4.1.1. Antecedentes	9
4.1.2. Definición de transformador.	9
4.1.3. Clasificación de los transformadores.	10
4.1.4. Transformadores de distribución.	10
4.1.4.1. Tipos de transformadores de distribución.	11
4.1.5. Transformadores de distribución monofásicos.	11
4.1.5.1. Conexión del transformador de distribución monofásico.	12
4.1.6. Tipos de transformadores de distribución monofásicos de tipo poste	14
4.1.7. Descripción de las partes constructivas de un transformador de distribu monofásico de tipo poste	ción
4.1.8. Aspectos constructivos.	15
4.1.8.1. Circuito magnético (Núcleo)	15
4.1.8.2. Circuito Eléctrico.	16
4.1.8.3. Sistema de refrigeración y aislamiento.	16
4.1.8.4. Tanques y accesorios	20
4.1.9. Principio de funcionamiento de un transformador ideal	20
4.1.9.1. Funcionamiento de un transformador ideal en vacío.	22
4.1.9.2. Funcionamiento de un transformador ideal con carga.	23
4.1.10. Principio de funcionamiento de un transformador real.	24
4.1.11. Pérdidas en el transformador.	27
4.1.11.1. Pérdidas de carga	27

4.1.11.2. Pérdidas en vacío	27
4.1.12. Factores que afectan la vida útil de los transformadores	28
4.2. DISTORSIÓN ARMÓNICA	29
4.2.1. Definición de armónicos	29
4.2.1.1. Armónico característico.	31
4.2.1.2. Armónico no característico.	31
4.3. Cargas lineales y no lineales.	31
4.4. Distorsión armónica total (THD).	32
4.5. Efecto de los armónicos en los transformadores distribución.	32
5. MATERIALES Y MÉTODOS	38
5.1. MÉTODOS DE CÁLCULO	38
5.1.1. EVALUACIÓN ANALÍTICA DEL TRANSFORMADOR APLICANDO NORMA ANSI/IEE C57.110) LA 38
5.1.1.1. Introducción	38
5.1.1.2. Pérdidas del transformador	38
5.1.1.3. Efecto de los armónicos en pérdidas con carga	39
5.1.1.4. Evaluación de pérdidas y capacidad de transformadores bajo cargas armónicas.	41
5.1.1.5. Procedimiento recomendado por la norma ANSI/IEE C57.110 para ev la capacidad de un transformador existente.	aluar 42
5.2. DESARROLLO DE UN ALGORITMO PARA EL CÁLCULO DE PÉRDI ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS D CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN MONOFÁSICOS.	DAS E 44
5.3. MATLAB	61
5.3.1. Creación de una GUI	61
5.4. CREACIÓN DE UNA GUI PARA EL CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS D CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN MONOFÁSICOS	E 65
6 RESULTADOS	73
6.1. EVALUACIÓN DE LOS TRANSFORMADORES APLICANDO LA NORM ANSI/IEE C57.110.	IA 73
6.2. APLICACIÓN DE LA GUI PARA EL CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS D CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN	E 92
7. DISCUSIÓN	104
8. CONCLUSIONES	105

9. RECOMENDACIONES 106
10. BIBLIOGRAFÍA 107
11. ANEXOS
Anexo A. Plantilla para insertar el espectro armónico de las 24 horas del día 110
Anexo B. Flujograma para el uso de la aplicación GUI para el cálculo de las pérdidas adicionales de las pérdidas causadas por la circulación de armónicos de corriente en los transformadores de distribución monofásicos de 10, 15, 25 y 37.5 kVA sumergidos en aceite
Anexo C. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en los transformadores de distribución monofásicos de 10 kVA
Anexo D. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador de distribución monofásico de 15 kVA.
Anexo E. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador monofásico de distribución 25 kVA 131
Anexo F. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador monofásico de distribución de 37.5 kVA.

1. TÍTULO

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

2. RESUMEN

En el presente trabajo se analiza los principales efectos de la distorsión armónica de corriente en los transformadores de distribución monofásicos inmersos en aceite de 10, 15, 25 y 37.5 kVA durante las 24 horas del día, a partir de un espectro armónico característico.

De acuerdo con la literatura técnica revisada, los armónicos de corriente generan un aumento adicional en las pérdidas y la disminución de la potencia nominal de los transformadores debido al alto contenido de cargas no lineales tales como variadores de velocidad, rectificadores, convertidores, etc.

Se presenta una revisión bibliográfica referente a: transformadores de distribución monofásicos y sus pérdidas, distorsión armónica y los efectos de los armónicos de corriente en los trasformadores de distribución.

Se define la metodología del algoritmo de cálculo de pérdidas adicionales causadas por la circulación de armónicas de corriente en los trasformadores de distribución monofásicos, se desarrolla el algoritmo de solución y se automatiza la secuencia de cálculos en un esquema dicromático y concluyendo el capítulo se programa dicha secuencia de cálculo en la herramienta GUI de MATLAB.

Por último, se presenta los resultados obtenidos aplicando el procedimiento desarrollado a partir de la norma ANSI/IEE C57.110TM-2008 y los resultados obtenidos con la aplicación GUI. Los resultados que se presentan son el reporte del incremento de las pérdidas y la potencia adecuada del transformador ante la presencia de corrientes no sinusoidales.

A partir de las recomendaciones de la norma ANSI/IEEE C57.110 se desarrolló un algoritmo, es decir, una secuencia de cálculo en base a la metodología de Lee y Christensen. Con la herramienta GUI del software de ingeniería MATLAB y con el procedimiento de cálculo propuesto se desarrolló una interfaz gráfica de usuario (GUI), esta permite calcular las pérdidas adicionales causadas por la circulación de armónicas de corriente en los transformadores de distribución monofásicos de 10, 15, 25 y 37.5 kVA de forma automática.

Para validar la aplicación GUI de MATLAB se evalúan los transformadores descritos con el mismo espectro armónico característico para un mismo tiempo, haciendo uso de la metodología analítica propuesta por la norma ANSI/IEEE C57.110 y la metodología automática (GUI), se determina la reducción de la capacidad y la corriente permisible del transformador ante cargas no lineales, y por último se lleva a cabo una comparación de los resultados obtenidos.

2.1. ABSTRACT

In the present project, it's analized the main effects of the harmonic current distortion in the monophase distribution transformers immersed in oil of 10, 15, 25 and 37.5 kVA are analyzed 24 hours a day, from a characteristic harmonic spectrum.

According to the revised technical literature, the current harmonics generate an additional increase in the losses and the decrease of the nominal power of the transformers due to the high content of non-linear loads.

A bibliographic review is presented regarding: single-phase distribution transformers and their losses, harmonic distortion and the effects of current harmonics in the distribution transformers.

The methodology of the algorithm for calculating additional losses caused by the circulation of current harmonics in the single-phase distribution transformers is defined, the solution algorithm is developed and the sequence of calculations is automated in a dichromatic scheme and the chapter is programmed calculation sequence in the MATLAB GUI tool.

Finally, the results obtained are presented applying the procedure developed from the ANSI/IEE C57.110TM-2008 standard and the results obtained with the GUI application. The results presented are the report of the increase in losses and the adequate power of the transformer in the presence of non-sinusoidal currents.

Based on the recommendations of the ANSI / IEEE C57.110 standard, a procedure was developed to calculate the total losses in the single-phase transformer when it feeds non-linear loads. With the proposed procedure, a sequence of calculations was developed, that is, a calculation algorithm based on the recommendations of Lee and Christensen methodology. With the GUIDE tool of the MATLAB engineering software and with the proposed calculation procedure, a graphical user interface (GUI) was developed, it allows to calculate the additional losses caused by the circulation of current harmonics in 10-phase single-phase distribution transformers, 15, 25 and 37.5 kVA automatically.

For the evaluation of the previously described transformers before a characteristic harmonic spectrum, the analytical methodology obtained from the ANSI / IEEE C57.110 standard and the automatic methodology (GUI) is used, determining the capacity

reduction and the permissible current of the transformer for non-linear loads, and finally a comparison of the results obtained is carried out.

3. INTRODUCCIÓN

Con el avance tecnológico actualmente en cada vivienda se encuentra un gran número de cargas no lineales (dispositivos electrónicos), las que introducen un elevado contenido de armónicos de corriente en la red de distribución eléctrica. La propagación de la distorsión de las corrientes de carga produce efectos negativos en los sistemas de distribución, afectando tanto al cliente como al proveedor del suministro eléctrico.

PROBLEMÁTICA

La eficiencia energética es el camino para llegar a un modelo energético sostenible. Por este motivo, es muy importante conocer el desempeño energético de los sistemas que tienen que ver con el uso final de la energía eléctrica. El transformador es un componente muy importante dentro de estos sistemas, ya que es el último elemento por donde pasa la energía eléctrica antes de llegar al usuario final. La eficiencia del transformador se ve afectada por problemas de la calidad de la energía, uno de estos problemas es la distorsión de onda de voltaje y de corriente.

El transformador es sensible a la circulación de corrientes no sinusoidales por sus devanados, esto produce un incremento en las pérdidas en el cobre y, por ende, el aumento de la temperatura y una reducción de la vida útil y de la capacidad del transformador.

El objetivo fundamental de este trabajo es determinar el impacto que genera la presencia de armónicas de corriente en la operación del transformador, para ello es necesario construir un algoritmo de cálculo automático que permita evaluar el comportamiento en el trasformador ante la presencia de un espectro armónico característico considerando las recomendaciones propuestas en la norma ANSI/IEEE C57.110.

Para el desarrollo del presente trabajo se plantearon los siguientes objetivos:

Objetivo General:

 Desarrollar un algoritmo de cálculo considerando las recomendaciones de la norma ANSI/IEEE C57.110 para evaluar transformadores de distribución monofásicos.

Objetivos Específicos:

• Evaluar la norma ANSI/IEEE C57.110 para determinar el impacto que generan los armónicos de corriente en los transformadores de distribución monofásicos.

- Determinar las secuencias que contendrá el algoritmo considerando las recomendaciones planteadas por la norma ANSI/IEEE C57.110.
- Validar el algoritmo de cálculo desarrollado con transformadores de distribución monofásicos de 10, 15, 25 y 37.5 kVA.

4. REVISIÓN DE LA LITERATURA

En el informe "*Estudio de desclasificación de transformadores de distribución de la ciudad de Santa Fe*", (Elías, Cea, & Manassero, 2014) menciona que las redes de energía eléctrica presentan una propagación cada vez mayor de cargas eléctricas no lineales generadas principalmente por dispositivos electrónicos de estado sólido y todo tipo de equipamiento informático.

La propagación de armónicos en los sistemas de distribución debido a cargas no lineales ha aumentado y se han convertido en un problema de calidad de energía para los clientes y proveedores (Marulanda Gonzales, 2015). Se define la calidad de energía eléctrica como "*una combinación de características a través de las cuales el producto y el servicio del suministro eléctrico corresponden a las normativas vigentes*" y de tal modo definen que la pérdida de calidad de energía es "*el deterioro de las señales de tensión y corriente*" (Castañeda & Castañeda, 2015) y (Acevedo Donoso, 2013).

En el Ecuador la Agencia de Regulación y Control de Electricidad (ARCONEL) se encarga de regular el uso de energía eléctrica (generación, transmisión y distribución) a través de la regulación (ARCONEL 005/18, 2018) "Calidad del servicio de distribución y comercialización de la energía eléctrica".

Algunas instituciones interesadas en el tema de la calidad de la energía como el Comité Européen de Normalisation Electrotechnique (CENELEC), The National Electrical Manufacturers Association (NEMA), International Electrotechnical Comission (IEC), Institute of Electrical and Electronic Engineers (IEEE) entre otras han desarrollado estándares, normativas y métodos de medición de calidad de energía.

Durante los últimos años el interés por conocer los efectos que causan las corrientes no sinusoidales en el sistema eléctrico y sobre todo en el transformador de distribución monofásico ha crecido, por ende, la norma ANSI/IEEE C57.110TM-2008 recomienda una metodología para determinar las condiciones óptimas de operación de transformadores ante corrientes no sinusoidales (Díaz, Carvajal, Velasco, Plata, & Giraldo, 2014).

Algunos autores como (Elías, Cea, & Manassero, 2014), (Díaz, Carvajal, Velasco, Plata, & Giraldo, 2014), (Hernández, Valido, & Sánchez, 2005), (Amit & Ranjana, 2011), (Díaz P, Arcila, & Steblina, 2008), (Faiz, Sharifian, Fakheri, & Sabet-Marzooghi, 2004), (Sanjay & Laxman, 2011) en sus trabajos evalúan el transformador monofásico ante la

presencia de armónicos de corriente en base a la norma ANSI/IEEE C57.110, concluyen que las pérdidas adicionales causadas por cargas no lineales conducen a un excesivo aumento en la temperatura del transformador, la fatiga y la falla prematura del aislador y reducción de la vida útil de la máquina. Por lo tanto, cuando se utilicen transformadores existentes o estándares que suplen armónicos de corriente, estos deben ser desclasificados, es decir, se debe disminuir la potencia nominal del trasformador para evitar un envejecimiento prematuro.

4.1. TRANSFORMADORES.

4.1.1. Antecedentes.

Los transformadores son de gran importancia, debido a que permiten pasar de un nivel de tensión a otro, en el mercado eléctrico. A diciembre de 2011, el indicador de pérdidas de energía eléctricas a nivel nacional se ubica en 14,73% en pérdidas por distribución en los transformadores de distribución. (CONELEC, 2011)

En una red de distribución su principal problema es el crecimiento de la demanda energética que afecta directamente a los transformadores. Para reducir el daño en los mismos, es necesario conocer la carga máxima y la capacidad de potencia de entrega del transformador y así minimizar los riesgos por sobrecargas que causan el envejecimiento prematuro del equipo. Los transformadores son equipos que no se pueden reemplazar al instante y además tienen un gran costo en cualquier sistema eléctrico, por lo cual se debe realizar estudios de sobrecarga y fallas para prolongar su vida útil (Hernández.R.D, 2015).

4.1.2. Definición de transformador.

El transformador se define como una máquina eléctrica estática que permite aumentar o disminuir el voltaje en un circuito de corriente alterna, manteniendo la frecuencia. Funciona bajo el principio de inducción electromagnética entre dos (o más) bobinas o circuitos acoplados inductivamente. (Preciado Mite & Rodas Herrera, 2015)

Los transformadores están compuestos por un devanado primario (inductor) que se conecta a una fuente de corriente alterna y un devanado secundario (inducido) que suministra energía eléctrica a las cargas, esto se muestra en la figura 1. Estos devanados se enrollan alrededor de un núcleo ferromagnético común, constituido por un apilamiento de chapas magnéticas de acero al silicio, mejorando así el acoplamiento entre ambos devanados y reduciendo las pérdidas por dispersión del campo magnético.

(Capelo.F.M., 2017)

Figura 1. Transformador ideal con carga. Fuente: (D.UMANS, 2000)

4.1.3. Clasificación de los transformadores.

Los transformadores se utilizan en el área residencial, comercial e industrial, y se los clasifica de acuerdo con la función que cumplen, en la tabla 1 se observa su clasificación.

	Generación
Por su utilización:	Subestación
	Distribución
Por las condiciones de servicio:	Intemperie
	Interior
De instrumentación:	Corriente
	Potencial
Por su operación:	Potencia
	Distribución
Por el número de fases	Monofásicos
i or er numero ue rases.	Trifásicos

Tabla 1. Clasificación de los transformadores.

Fuente: (Pila Rocha & Toapanta Morejón, 2012).

4.1.4. Transformadores de distribución.

Los transformadores de distribución reducen la tensión de la red primaria a la tensión de la red secundaria, pueden ser monofásicos o trifásicos.

La (EMPRESA ELÉCTRICA REGIONAL DEL SUR S.A, 2012) establece los siguientes niveles de voltaje para el área Sur del país:

- Alta tensión: con un nivel de tensión de 69 kV para el sistema de subtransmisión.
- Media tensión: opera con dos niveles de tensión en dos zonas establecidas

Zona de Loja: El sistema de distribución es de 13.8/7.97 kV para toda la provincia de Loja.

Zonal Oriental: el sistema de distribución es de 22/12.7 kV para la provincia de Zamora Chinchipe y el cantón Gualaquiza.

 Baja tensión: las redes de distribución pueden ser Sistemas monofásicos con nivel de tensión de 240/120 V Sistemas trifásicos con nivel de tensión de 220/127 V

Las potencias nominales aparentes para los transformadores de distribución monofásicos y trifásicos según la Norma Técnica Ecuatoriana (NTE) se muestran en la tabla 2.

 Tabla 2. Capacidades de potencia aparente nominal para transformadores monofásicos y trifásicos de distribución.

TIPO	CAPACIDADES (kVA)	
Monofásicos	3; 5; 10; 15; 25; 37.5; 50; 75; 100; 167; 250; 333	
Trifásicos	15; 30; 45; 50; 60; 75; 100; 112.5; 125; 150; 160; 200; 225; 250;	
	300; 350; 400; 500; 630; 750; 800; 1000; 1250; 1500; 1600; 2000	
Fuente: (NTE INEN 2131, 2004).		

4.1.4.1. Tipos de transformadores de distribución.

Según (Toasa, 2011) existen cuatro tipos de transformadores de distribución:

- Transformador tipo subestación.
- Transformador tipo pedestal.
- Transformador tipo poste.
- Transformador tipo sumergible.

4.1.5. Transformadores de distribución monofásicos.

El transformador de distribución se utiliza en distribución de energía eléctrica para reducir líneas de media tensión a líneas de baja tensión, por ejemplo, reducen de 13,8 kV a 240/120V, es diseñado para suministrar el voltaje adecuado a los usuarios. Básicamente está compuesto por un núcleo de acero, un devanado en lado primario y otro devanado en el lado secundario. En la figura 2 se observa el bobinado primario con N1 espiras es aquel por la cual ingresa la energía y el secundario con N2 espiras es aquel por la cual se suministra dicha energía (Álvares J, 2009).

Figura 2. Esquema de un transformador monofásico del tipo de núcleo. Fuente: (*Transformadores, 2009*)

4.1.5.1. Conexión del transformador de distribución monofásico.

En la provincia de Loja los transformadores de distribución monofásicos de tipo poste, son los más usados, operan a una tensión de 13.8 GRDY/7.97 kV para media tensión y 120/240 V para baja tensión. Constan de un devanado primario que se conecta a media tensión y de un devanado secundario que se compone de dos bobinas. Existen dos tipos de conexiones para estas bobinas:

- Conexión en serie para un sistema de alimentación trifilar de 120/240V, se visualiza en la figura 3.
- Conexión en paralelo para un sistema de alimentación bifilar de 120V, se visualiza en la figura 4.

Figura 3. Conexión en serie de un transformador de distribución monofásico. Fuente: (ECUATRAN S.A, 2018).

Figura 4. Conexión en paralelo de un transformador de distribución monofásico. Fuente: (ECUATRAN S.A, 2018).

4.1.6. Tipos de transformadores de distribución monofásicos de tipo poste.

En el mercado eléctrico del Ecuador, (ECUATRAN S.A, 2018) define dos tipos de transformadores de distribución monofásicos de tipo poste:

- **Convencionales:** este tipo de transformador posee accesorios normales de funcionamiento, es decir, no cuenta con protecciones eléctricas.
- Autoprotegidos: Es un transformador convencional que internamente cuenta con elementos de protección contra: las sobretensiones (pararrayos), sobre corrientes por cortocircuito (fusible de expulsión) y por sobrecarga (interruptor termomagnético), además cuenta con una luz piloto para indicar situaciones de sobrecarga.

4.1.7. Descripción de las partes constructivas de un transformador de distribución monofásico de tipo poste.

En la figura 5 se esquematizan los accesorios de un transformador de distribución monofásico de tipo poste.

Figura 5. Elementos que conforman un transformador monofásico. Fuente: (INATRA, 2018)

En la tabla 3 se describe las partes constructivas de un transformador monofásico de tipo poste:

DESCRIPCIÓN		
1.	Bushing de alta tensión	
2.	Válvula de sobrepresión	
3.	Luz piloto	
4.	Breaker	
5.	Pararrayos	
6.	Platina de puesta a tierra	
7.	Conmutador	
8.	Soporte para poste	
9.	Perno de puesta a tierra	
10.	Bushing de baja tensión	
11.	Fusible de expulsión	
12.	Oreja de izaje	

Tabla 3. Descripción de los elementos que conforman un transformador monofásico.

Fuente: (INATRA, 2018).

4.1.8. Aspectos constructivos.

De acuerdo con (Pila Rocha & Toapanta Morejón, 2012) los principales elementos de un transformador son:

- Circuito magnético.
- Circuito eléctrico.
- Sistema de refrigeración y asilamiento.
- Tanques y accesorios.

4.1.8.1. Circuito magnético (Núcleo).

Sirve para conducir el flujo magnético generado, el cual enlaza magnéticamente los circuitos eléctricos del transformador, el circuito magnético también se lo denomina núcleo (Hernández.R.D, 2015, pág. 7). El núcleo está conformado por la unión de chapas de acero al silicio, modernamente laminadas en frio (grano orientado), este se clasifica en dos tipos: de núcleo único y de tipo acorazado (Capelo.F.M., 2017, pág. 25).

4.1.8.2. Circuito Eléctrico.

El circuito eléctrico se describe como la composición de dos devanados, en el cual se transfiere energía del bobinado primario al secundario, es un sistema muy seguro ya que no hay ninguna conexión eléctrica entre ambos. Están hechos de espiras de cobre, cubiertos con cinta aislante, impregnados de barniz aislante y tratados al vacío (Hernández.R.D, 2015).

En el transformador las partes más frágiles son el aislamiento y los bobinados, deben ser diseñados para resistir el estrés térmico, dieléctrico y mecánico resultantes de fallas, cortocircuitos y sobretensiones por maniobras de operación ó descargas atmosféricas (Capelo.F.M., 2017).

4.1.8.3. Sistema de refrigeración y aislamiento.

Como en toda máquina eléctrica, en el transformador hay pérdidas de potencia que se transforman en calor y generan un excesivo calentamiento en la máquina (Mora.J., 2003). Con el fin de evadir las altas temperaturas que afectan la vida de los aislamientos de los bobinados es necesario dotar al transformador de un sistema de refrigeración idóneo. Se destaca que el sistema de refrigeración es indispensable para mantener las propiedades dieléctricas del aislamiento y un adecuado envejecimiento de la máquina. (Capelo.F.M., 2017)

Los transformadores de distribución menores de 200 kVA normalmente se sumergen en aceite. El calor del aceite se pasa a la cuba desde donde se dispersa por convección y radiación al aire exterior. El aceite cumple una doble función como aislante y refrigerante, ya que posee una capacidad térmica y una rigidez dieléctrica superior a la del aire.

A continuación, se describe los siguientes tipos de enfriamiento, los cuales se presenta en la tabla 4. (Hernández.R.D, 2015)

 Tabla 4. Tipos de enfriamiento en transformadores sumergidos en aceite.

TIPOS DE ENFRIAMIENTO TRANSFORMADORES SUMERGIDOS EN		
ACEITE		
TIPO DE ENFRIAMIENTO	DEFINICIÓN	
OA	Enfriamiento Natural, en estos transformadores el aceite aislante circula por convección natural dentro de un tanque que tiene paredes lisas o corrugadas, también con tubos radiadores.	
OA/FA	Transformador sumergido en líquido aislante con enfriamiento propio y con enfriamiento forzado. Este tipo de transformadores es básicamente una unidad OA a la cual se le han agregado ventiladores para aumentar la disipación de calor en las superficies de enfriamiento y, por lo tanto, aumentar los kVA de salida.	
OA/FA/FOA	Transformador sumergido en líquido aislante con enfriamiento propio/con aceite forzado/aire forzado. Con este tipo de enfriamiento se trata de incrementar el régimen de operación (carga) de transformador tipo OA por medio del empleo combinado de bombas y ventiladores.	
FOA	Tiene enfriamiento por aceite forzado con enfriadores de aire forzado. El aceite de estos transformadores es enfriado al hacerlo pasar por cambiadores de calor o radiadores de aire y aceite colocados fuera del tanque. Su diseño está destinado a usarse únicamente con los ventiladores y las bombas de aceite trabajando continuamente.	
OW	Tiene enfriamiento por agua. Este tipo de transformador está equipado con un cambiador de calor tubular colocado fuera del tanque, el agua de enfriamiento circula en el interior de los tubos y se drena por gravedad o por un medio de una bobina independiente. El aceite fluye, estando en contacto con la superficie de los tubos.	
FOW	Tiene enfriamiento de aceite forzado con enfriadores de agua forzada. El transformador es prácticamente igual que el FOA, excepto que el cambiador de calor es del modelo agua-aceite y por la tanto el enfriamiento del aceite se hace por medio de agua sin tener ventiladores.	

Fuente: (Hernández.R.D, 2015).

El sistema de aislamiento, dentro de los trasformadores, cumple la función de aislar los devanados entre sí y a tierra, y por este motivo este sistema debe contar con las siguientes cualidades (Pila Rocha & Toapanta Morejón, 2012):

- Capacidad para soportar las tensiones relativamente elevadas.
- Capacidad para soportar esfuerzos térmicos y mecánicos.
- Capacidad para evitar excesivas acumulaciones de calor.

Los materiales aislantes deben ser capaces de aislar las bobinas de la carcasa de la máquina, aislar las bobinas entre sí, aislar las láminas del núcleo magnético, aislar las bobinas de diferentes fases, ayudar en la transferencia de calor al exterior y proveer soporte mecánico al bobinado. Los materiales aislantes más comunes según (Pila Rocha & Toapanta Morejón, 2012) son:

- Cartón prensado.
- Papel Kraft normal o tratado.
- Papel manila y corrugado.
- Cartón prensado de alta densidad.
- Barnices y esmaltes.
- Recubrimiento de polvo epóxico.
- Cintas adhesivas y cintas de fibra de vidrio.
- Algodón, hilos.
- Fluidos líquidos dieléctricos.

La norma IEC 60085-1994 describe siete clases de aislante según la temperatura de operación, los cuales se muestran en la tabla 5.

CLASE DE AISLANTE POR TEMPERATURA DE OPERACIÓN		
	Temperatura	Descripción de materiales
Clase	de	
	operación en	
	°C	
		Papeles y cartones no impregnados, madera, algodón,
V	Upsta 00°C	seda, formaldehido, urea, plástico natural, fibra
Y	Hasta 90°C	vulcanizada y varios termoplásticos limitados por su
		punto de ablandamiento. Como el polietileno reticulado.
		Papel, algodón y seda impregnados con aceite de barniz;
		materiales moldeados o estratificados con relleno de
		celulosa; laminas y hojas de acetato de celulosa y otros
Α	Hasta 105°C	derivados de celulosa de propiedades semejantes; fibras
		vulcanizada y madera; policloruro de vinilo; barnices
		aislantes a base de resinas naturales; asfaltos naturales y
		fenólicos modificados.
		Fenol formaldehido y melanina formaldehido moldeada
Б	Heate 120°C	y laminada con materiales celulósicos, polivinil formal,
E	Hasta 120 C	poliuretano, resinas epóxicas y barnices; triacetano de
		celulosa, polietileno compuesto.
		Fibras inorgánicas y materiales flexibles (tales como:
D	Heate 120°C	mica, vidrio o asbesto), cubiertos e impregnados con
D	Hasta 130°C	resina orgánica apropiada; epóxicos, formaldehidos,
		melanina mormaldehído y lacas.
		Tejido de fibra de vidrio tratado con resinas de poliéster;
	Hasta 155°C	mica y papel de mica, aglomerada con resinas de
F		poliéster o con resinas epóxicas. Estratificados a base de
		tejido de vidrio y resinas epóxicas de gran resistencia
		térmica; estratificados con amianto-vidrio.
		Aislamientos de elastómeros de siliconas; tejidos de
		fibra de vidrio, aglomerados con resinas de siliconas;
Н	Hasta 180°C	mica y papel de mica, aglomerados con siliconas;
		estratificados de fibra de vidrio y resinas de siliconas;
		barnices aislantes a base de resinas de silicona.
С	Arriba de 180°C	Mica pura y estratificados de papel de mica con
		aglomerante inorgánico; estratificados de amianto y
		aglomerante inorgánico; porcelana y materiales
		cerámicos; vidrio y cuarzo; poliamidas.

Tabla 5. Clase de aislante por temperatura de operación.

Fuente: (Hernández.R.D, 2015).

4.1.8.4. Tanques y accesorios.

Los transformadores en el cual su sistema de refrigeración es mediante líquido es necesario introducir la parte activa en una cuba o tanque de aceite mineral, es decir, tener inmersos en aceite sus devanados, sus núcleos y ciertos accesorios en el tanque, entre una temperatura mínima de -5°C y una temperatura de 110°C como máxima. La forma del tanque o cuba puede ser ondulada, plana, con radiadores y aletas, eliminando de esta forma el calor mediante radiación y convección natural (Hernández.R.D, 2015).

Los accesorios principales del transformador de distribución son:

- Bushing o pasatapas de porcelana de alta tensión y baja tensión: son aisladores pasantes de porcelana que permiten llevar los bornes del devanado hacia el exterior de la parte superior del tanque, se encuentran llenos de aceite o aire. Los Bushing de alta tensión y baja tensión se distinguen por la altura siendo el de mayor tensión el más alto (Capelo.F.M., 2017).
- Intercambiador de tomas o TAPS.
- Terminales de cobre para alta tensión y baja tensión.
- Bastidor y herrajes.
- Dispositivos de protección: contra sobre corrientes, tensiones muy altas y sobrecargas atmosféricas.

4.1.9. Principio de funcionamiento de un transformador ideal.

Para comprender el funcionamiento de un transformador ideal, consideremos la figura 6 en donde se observa un núcleo magnético real, un devanado primario con un número de espiras N_1 que se conecta a una fuente de corriente alterna y un devanado secundario con un número de espiras N_2 que a través de un disyuntor se conecta a una carga. Este núcleo consta de una permeabilidad finita y tiene pérdidas en el hierro P_{Fe} (Capelo.F.M., 2017).

Figura 6. Transformador monofásico conectado a una carga. Fuente: (Mora.J., 2003).

Para comprender el funcionamiento y los fenómenos físicos que ocurren en un transformador, se supone que el mismo es ideal, por lo tanto, se supone que se cumplen las siguientes condiciones ideales (Mora.J., 2003):

- La resistencia óhmica tanto del devanado primario como del secundario es nula, por ende, no existen pérdidas por el efecto Joule y no hay caídas de tensión en el transformador.
- No hay flujos de dispersión debido a que el núcleo cuenta con una permeabilidad relativa, por lo que todo el flujo magnético del primario enlaza totalmente al devanado secundario.

El principio de funcionamiento de un transformador se basa en la ley de inducción electromagnética de Faraday, de tal modo, si alimentamos con una fuente de voltaje alterna v_1 al devanado primario, por el mismo circulará una corriente alterna que originará un flujo magnético variable con respecto al tiempo en el núcleo cuyo sentido se determinada por la ley de Ampère, este flujo crea fuerzas electromotrices inducidas en ambos devanados, conforme a la ley de Faraday y Lenz estas fuerzas electromotrices responden a las siguientes ecuaciones:

$$e_1 = N_1 \frac{d\Phi}{dt} \tag{1}$$

$$e_2 = N_2 \frac{d\Phi}{dt} \tag{2}$$

Los sentidos de las fuerzas electromotrices y de las corrientes se indican en la figura 6, del tal modo es necesario conocer las relaciones que hay entre los flujos magnéticos, las fuerzas electromotrices y las tensiones:

$$v_1 = e_1 = N_1 \frac{d\Phi}{dt} \tag{3}$$

$$v_2 = e_2 = N_2 \frac{d\Phi}{dt} \tag{4}$$

Teniendo en cuenta que el flujo magnético es casi senoidal, se simplifica el análisis:

$$\Phi = \Phi_{m\acute{a}x} \sin \omega t = \Phi_{m\acute{a}x} \cos(\omega t - 90^{\circ})$$
(5)

Tomando en cuenta la ecuación anterior las tensiones inducidas serán:

$$v_1 = e_1 = N_1 \omega \Phi_{max} \cos \omega t \tag{6}$$

$$v_2 = e_2 = N_2 \omega \Phi_{max} \cos \omega t \tag{7}$$

Teniendo en cuenta que las fuerzas electromotrices y las tensiones van adelantadas 90° respecto al flujo y que el $\Phi_{máx}$ es el valor máximo del flujo magnético, de tal modo los valores eficaces de estas fuerzas son:

$$V_{1} = E_{1} = \frac{N_{1}\omega\Phi_{m\acute{a}x}}{\sqrt{2}} = 4,44fN_{1}\Phi_{m\acute{a}x}$$
(8)

$$V_2 = E_2 = \frac{N_2 \omega \Phi_{m \acute{a}x}}{\sqrt{2}} = 4,44 f N_2 \Phi_{m \acute{a}x}$$
(9)

Como mencionamos anteriormente se necesita conocer las relaciones entre las tensiones y las fuerzas electromotrices, de tal modo dividiendo las ecuaciones 8 y 9 entre sí, se obtiene la relación de transformación m:

$$m = \frac{V_1}{V_2} = \frac{E_1}{E_2} = \frac{N_1}{N_2} \tag{10}$$

De lo anterior, se deduce que en un transformador ideal la relación de transformación corresponde a la relación del número de espiras del devanado primario entre el número de espiras del devanado secundario.

4.1.9.1. Funcionamiento de un transformador ideal en vacío.

Consideremos que el devanado secundario de la figura 6 está abierto, en este caso el transformador opera en vacío y absorbe una corriente de vacío I₀, esta corriente forma un ángulo φ_0 con la tensión V₁ aplicada en el devanado primario, de este modo se absorbe una potencia de vacío P₀ que es igual a las pérdidas en el hierro P_{Fe} en el núcleo que corresponde a la siguiente ecuación:

$$P_0 = P_{Fe} = V_1 I_0 \cos \varphi_0 \tag{11}$$

Donde los valores eficaces de la corriente y de la tensión se representan por I_0 y V_1 , respectivamente.

En la figura 7, se observa el diagrama fasorial de un transformador ideal que opera en vacío, donde también se muestra la corriente de vacío, que se compone de una corriente

activa I_{Fe} y una corriente reactiva $I\mu$, tomando V_1 como referencia de fases (Mora.J., 2003).

Figura 7. Diagrama fasorial de corrientes y tensiones de un transformador que opera en vacío. Fuente: (Mora.J., 2003).

4.1.9.2. Funcionamiento de un transformador ideal con carga.

Si el circuito del devanado secundario de la figura 6 está cerrado se conecta una carga, por lo cual, el transformador opera con carga, y circula una corriente i_2 que se representa por un fasor (Mora.J., 2003):

$$I_{2} = \frac{E_{2}}{Z_{L}} = \frac{E_{2} \angle 0^{\circ}}{Z_{L} \angle \varphi_{2}} = \frac{E_{2}}{Z_{L}} \angle -\varphi_{2}$$
(12)

De modo que la I₂ se retrasa de la fuerza electromotriz E₂ en un ángulo de φ_2 .

Al circular la corriente i_2 por el secundario produce una fuerza magnetomotriz $N_2 i_2$, que afecta al flujo magnético en el núcleo y desequilibra las tensiones y fuerzas electromotrices, para contrarrestar esta fuerza es necesario una corriente adicional i'_2 que genera una fuerza magnetomotriz $N_1 i'_2$, de modo que:

$$N_1 i'_2 = N_2 i_2 \tag{13}$$

De la ecuación anterior se obtiene la corriente i'_2 adicional primaria:

$$i'_2 = \frac{i_2}{m} \tag{14}$$

Como se observa en la figura 6, la corriente total necesaria en el devanado primario es:

$$i_1 = i_0 + \frac{i_2}{m}$$
(15)

Que en forma fasorial se representa de la siguiente forma:

$$I_1 = I_0 + \frac{I_2}{m}$$
(16)

La ecuación 16 muestra las dos componentes que tiene la corriente primaria:

- Corriente de vacío o de excitación que es necesaria para producir el flujo magnético en el núcleo y que a través de sus componentes *I_μ* e *I_{Fe}* vence las pérdidas en el hierro.
- Una corriente adicional l'₂ que neutraliza la acción desmagnetizante de la fuerza magnetomotriz secundaria para el flujo en el núcleo permanezca constante e independiente de la carga.

4.1.10. Principio de funcionamiento de un transformador real.

Para analizar un transformar real hay que tomar en cuenta las resistencias de los devanados, las dispersiones de flujo y las corrientes de excitación. En la figura 8 se muestra las resistencias y flujos de dispersión de los devanados de un transformador (Mora.J., 2003):

Figura 8. Transformador real con flujos de dispersión y resistencias. Fuente: (Mora.J., 2003).

Si se denomina flujo de dispersión del primario como Φ_{d1} y Φ_{d2} como flujo de dispersión del secundario, se obtienen los flujos totales que atraviesan los devanados primario y secundario, de la siguiente forma:

$$\Phi_1 = \Phi + \Phi_{d1} \tag{17}$$

$$\Phi_2 = \Phi + \Phi_{d2} \tag{18}$$

Para seguir con la idea del flujo común único se añaden en serie a cada devanado unas bobinas con el mismo número de espiras que los devanados correspondientes, entonces al circular intensidades en estas bobinas generan los mismos flujos de dispersión Φ_{d1} y

 Φ_{d2} que suceden en los devanados reales. A continuación, se definen los coeficientes de autoinducción de estas bobinas:

$$L_{d1} = N_1 + \frac{d\Phi_{d1}}{di_1}$$
(19)

$$L_{d2} = N_2 + \frac{\mathrm{d}\Phi_{d2}}{\mathrm{d}i_2} \tag{20}$$

De tal modo las reactancias de dispersión X1 y X2 corresponden a:

$$X_1 = L_{d1}\omega \tag{21}$$

$$X_2 = L_{d2}\omega \tag{22}$$

Figura 9. Bobinas ideales en el núcleo en un transformador real. Fuente: (Mora.J., 2003)

De la figura 9 y aplicando la segunda ley de Kirchhoff se tiene:

$$v_1 = e_1 + R_1 i_1 + L_{d1} \frac{di_1}{d_t}$$
(23)

$$e_2 = v_2 + R_2 i_2 + L_{d2} \frac{di_2}{d_t}$$
(24)

Si las ecuaciones anteriores se expresan en forma compleja, quedan de la siguiente forma:

$$V_1 = E_1 + R_1 I_1 + j X_1 I_1 \tag{25}$$

$$V_2 = E_2 - R_2 I_2 - j X_2 I_2 \tag{26}$$

De la figura 9 se deducen los valores de e_1 y e_2 con la ayuda de las ecuaciones (1) y (2):

$$e_1 = N_1 \frac{d\Phi}{dt} \tag{27}$$

$$e_2 = N_2 \frac{d\Phi}{dt} \tag{28}$$

Según las ecuaciones (8) y (9) sus valores eficaces son:

$$E_1 = 4,44f N_1 \Phi_{m\acute{a}x} \tag{29}$$

$$E_2 = 4,44f N_2 \Phi_{m\acute{a}x} \tag{30}$$

Donde ya se conoce que $\Phi_{m \acute{a}x}$ es el flujo máximo que circula por el circuito de la figura 9.

Si se tiene en cuenta la ecuación 30, tenemos la relación entre los valores eficaces de las fuerzas electromotrices inducidas:

$$m = \frac{E_1}{E_2} = \frac{N_1}{N_2}$$
(31)

Como se observa la ecuación 31 se cumple tanto en el transformador real como en el ideal que se estudió. Pero si se toma en cuenta las ecuaciones (23), (24), (25) y (26) el transformador real no cumple con la ecuación (31), de tal modo en un caso real la relación entre la tensión primaria y secundaria no es igual a la relación de transformación. En los transformadores que se utilizan a nivel industrial, las caídas de tensión a plena carga son del 1 al 10 % de las tensiones asignadas, por lo que las ecuaciones tienden a ecuaciones aproximadas:

$$V_1 \approx E_1 \tag{32}$$

$$V_2 \approx E_2 \tag{33}$$

de tal modo la relación de transformación es aproximadamente:

$$m \approx \frac{V_1}{V_2} \tag{34}$$

Si opera en vacío, las ecuaciones (25) y (26) se convierten en:

$$V_1 = E_1 + R_1 I_0 + j X_1 I_0 \tag{35}$$

$$V_2 = E_2 \tag{36}$$

del mismo modo, las caídas de tensión en la ecuación (35) son muy pequeñas y por esto se puede decir que:

$$V_1 = E_1 \tag{37}$$

$$V_2 = E_2 \tag{38}$$

donde se define a V_2 como la tensión secundaria en vacío y teniendo en cuenta las ecuaciones anteriores, se define:

$$m = \frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{V_1}{V_2}$$
(39)

La anterior ecuación define la relación de transformación que incluye el fabricante en la placa característica del transformador, que muestra la relación entre la tensión primaria aplicada y la tensión secundaria en vacío.

4.1.11. Pérdidas en el transformador.

Ninguna máquina eléctrica es ideal, por ende, el transformador también presenta pérdidas de potencia tanto el circuito eléctrico, como en el circuito magnético, de modo que, se define pérdida de potencia a la diferencia entre las potencias de entrada y salida.

Las pérdidas que se mencionaron anteriormente se presentan en forma de calentamiento que aumentan la temperatura en los elementos del transformador y por lo tanto es la causa principal que limita la potencia que se podría obtener de la máquina en cuestión. También implican un gasto innecesario de energía que aumentan el costo del servicio y afecta gravemente la economía del sistema (Herrera.J.C., 1997).

Las pérdidas de potencia se dividen en pérdidas fijas y pérdidas variables, que en definitiva son (Mora.J., 2003):

- Las pérdidas fijas, que se producen en el núcleo debido al campo magnético variable, también se las conoce como pérdidas en el núcleo o pérdidas en vacío.
- Las pérdidas variables, que depende de las corrientes que circulen por los devanados, generalmente pérdidas en el cobre (I²R) y también se las denomina pérdidas de carga.

4.1.11.1. Pérdidas de carga.

Las pérdidas con carga se dividen en:

- Pérdidas adicionales.
- Pérdidas óhmicas.

Las pérdidas adicionales se deben por la acumulación de pérdidas adicionales experimentadas por el transformador, que son pérdidas por corrientes parásitas en los devanados y pérdidas derivadas de los efectos del flujo de dispersión en las estructuras internas de la máquina. Las pérdidas óhmicas son debido a la resistencia de los devanados y a la corriente de carga que circula por los mismos (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014).

4.1.11.2. Pérdidas en vacío.

Las pérdidas en vacío se producen por el fenómeno de histéresis y corrientes parásitas en el núcleo, estás pérdidas son proporcionales a la máxima densidad del flujo y a la frecuencia, y se las considera constantes debido a que su variación es mínima en operación (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014).
La norma técnica INEN 2114 establece los siguientes valores límites, para las pérdidas en vacío y para las pérdidas con carga que se indican en la tabla 6.

Transformadores n	nonofásicos de 3 a	333 kVA
Clase medio	voltaje≤25 kV f-	f;
Clase bajo voltaje	\leq 1,2 kV; referidos	s a 85°C
Potencia nominal (kVA)	Po (W)	Pc (W)
3	21	70
5	31	91
10	52	142
15	68	192
25	98	289
37,5	130	403
50	160	512
75	214	713
100	263	897
167*	379	1360

Tabla 6. Pérdidas de potencia de transformadores monofásicos.

Fuente: (Insituto Ecuatoriano de Normalización, 2004).

*Para potencias entre 167 kVA y 333 kVA, las pérdidas se determinarán en común acuerdo entre fabricante y comprador.

4.1.12. Factores que afectan la vida útil de los transformadores.

Para el uso correcto del transformador de distribución se debe tener un amplio conocimiento de la máquina, para dar un mantenimiento adecuado, el cual permite alargar la vida útil del mismo.

Las situaciones que provocan un fallo o que reducen de una manera acelerada la vida útil del transformador son: montaje inapropiado, malos programas de mantenimiento, sobretensiones por operaciones de maniobra o descargas atmosféricas, sobrecargas y fallas en la red. (Hernández.R.D, 2015)

4.2. DISTORSIÓN ARMÓNICA.

Es importante entender, que los armónicos son los subproductos de la electrónica de potencia, y se manifiestan donde hay un gran número de aparatos eléctricos y otros equipos que absorben corriente en forma de impulsos cortos. Estos equipos están diseñados para absorber corriente durante sólo una fracción controlada de la onda de tensión de alimentación. Estos armónicos generan problemas en las instalaciones eléctricas, los cuales son sobrecalentamientos en los conductores, motores, excesivas corrientes en el neutro, resonancia, disminución de la calidad de la energía eléctrica y entre los problemas más importantes es la afectación al transformador. (Tapia D F, 2014) (Acevedo Donoso, 2013)

La propagación de la distorsión de las corrientes de carga en los sistemas de distribución genera pérdidas adicionales y un excesivo calentamiento en el transformador, lo cual limita su potencia nominal, y es por este motivo que en la actualidad se busca disminuir el impacto de la distorsión armónica en las redes de distribución (Hernández, Valido, & Sánchez, 2005).

4.2.1. Definición de armónicos.

El teorema de Fourier define que, bajo ciertas condiciones analíticas, una función periódica cualquiera puede considerarse integrada por una suma de funciones senoidales, incluyendo un término constante en caso de asimetría respecto al eje de las abscisas, siendo la primera armónica, denominada también señal fundamental, del mismo período y frecuencia que la función original y el resto serán funciones senoidales cuyas frecuencias son múltiplos de la fundamental. Estas componentes son denominadas armónicos de la función periódica original. (Marulanda Gonzales, 2015)

Los armónicos son corrientes y/o voltajes presentes en un sistema eléctrico, con una frecuencia múltiplo de la frecuencia fundamental. Por ejemplo, en sistemas con frecuencia de 60 Hz y cargas monofásicas, los armónicos característicos son la tercera (180 Hz), quinta (300 Hz), y séptima (420 Hz). (Llamas & Tejada, 2015)

Figura 10. Intensidad afectada por armónicos y su descomposición en los componentes armónicos fundamental, 3, 5, 7 y 9.
Fuente: (Schneider Electric)

Los armónicos impares se encuentran en las instalaciones eléctricas industriales y domiciliarias. Los armónicos de orden par se encuentran cuando se produce una asimetría en la señal debido a la componente continua (Figura 11).

Figura 11. Armónicos pares e impares. Fuente: (Vidal & Valenzuela, 2010).

Los armónicos generalmente se definen con las siguientes características:

- Su amplitud: es el valor de la intensidad o tensión del armónico.
- Su orden: es el valor de su frecuencia referido a la fundamental (60Hz), es decir, un armónico de orden 3 tiene una frecuencia tres veces de la fundamental.

Los armónicos se generan por cargas no lineales que absorben corriente en impulsos bruscos, a diferencia de hacerlo gradualmente en forma sinusoidal, como lo haría una carga resistiva pura. Estos impulsos crean ondas de corriente distorsionadas que originan a su vez corrientes armónicas de retorno hacia otras partes del sistema de distribución eléctrica (Acevedo Donoso, 2013).

4.2.1.1. Armónico característico.

Los armónicos característicos según (Tapia D F, 2014) son producidos por equipos convertidores semiconductores en el curso de operación normal. Por ejemplo, un convertidor de seis pulsos tiene como armónicos característicos los impares diferente a los múltiplos de tres, por ejemplo, los 5th, 7th, 11th, 13th, etc.

4.2.1.2. Armónico no característico.

Los armónicos no característicos no son producidos por efecto de equipos convertidores semiconductores en el curso de funcionamiento normal (IEEE.Std.519-1992). Este tipo de armónicos son producidos por:

- Frecuencias oscilatorias.
- Variaciones del armónico característico.
- Variaciones de la onda fundamental.
- Desbalance en los sistemas de potencia AC.

4.3. Cargas lineales y no lineales.

Se denomina carga lineal cuando se aplica una tensión senoidal directamente a cargas tales como resistencias, inductancias, capacitores o una combinación de ellos, se produce una corriente proporcional que también es senoidal (Sánchez & Ruggero, 2014).

Una carga no lineal se define cuando en circuitos en los que su gráfica corriente-voltaje no es lineal, el voltaje aplicado no es proporcional a la corriente, resultando una señal distorsionada con respecto a la senoidal. (Hernández.R.D, 2015)

4.4. Distorsión armónica total (THD).

Es la relación entre el valor eficaz del total de las componentes armónicas y el valor eficaz correspondiente a la componente fundamental. La distorsión armónica total, son los que introducen distorsión a las ondas de corriente y de voltaje, pero las ondas que perjudican más a nuestra red eléctrica son las de corriente ya que estas tienen como consecuencia efectos negativos en la red eléctrica (Tapia D F, 2014).

Para obtener la distorsión armónica total de corriente (THD*i*) y la distorsión armónica total de voltaje (THD*v*) se utilizan las siguientes ecuaciones:

$$THD_{i} = \frac{\sqrt{\sum_{i=2}^{\infty} {I_{i}}^{2}}}{I_{1}} * 100\%$$
(40)

$$THD_{v} = \frac{\sqrt{\sum_{i=2}^{\infty} V_{i}^{2}}}{V_{1}} * 100\%$$
(41)

Donde:

i: Número de armónica.

I1: Valor eficaz de la onda fundamental de la corriente.

V₁: Valor eficaz de la onda fundamental del voltaje.

I_i: Valor eficaz de la corriente del armónico k.

V_i: Valor eficaz del voltaje del armónico k.

La norma IEEE 519 tiene como objetivo limitar la inyección de corrientes armónicas en la red eléctrica, de modo que las armónicas de voltaje de nuestro sistema de alimentación de potencia no sean mayor al 3% en la amplitud de la onda de tensión de alimentación a frecuencia fundamental, y también busca cumplir que los valores del THD sea menor del 5% en los sistemas donde no tenemos presencia de resonancia (Tapia D F, 2014).

4.5. Efecto de los armónicos en los transformadores distribución.

Los efectos de los armónicos de corriente sobre los trasformadores de distribución son muy perjudiciales y por este motivo es uno de los temas más preocupantes actualmente, (Hernández, Valido, & Sánchez, 2005) menciona que los problemas más importantes causados por los armónicos son la generación adicional de pérdidas y calentamiento en los transformadores, lo que conlleva a la disminución de la vida útil de la máquina. Por esta razón se debería calcular el incremento de las pérdidas y determinar las temperaturas que alcanzará el aceite, de esta forma, se conocería la verdadera capacidad del transformador ante la presencia de armónicos.

Los armónicos afectan de las siguientes maneras al transformador según (Chapman, 2001):

- Las pérdidas por corrientes parásitas, que generalmente representan un 10% aproximadamente de las pérdidas a plena carga, crecen con el cuadrado del número de orden del armónico. En un caso donde un transformador opera a plena carga alimentando artefactos electrónicos, las pérdidas totales serían el doble que en caso de una carga lineal equivalente. Esto origina una temperatura de funcionamiento mucho más elevada y, en consecuencia, una vida útil del equipo más corta.
- El segundo efecto está relacionado con los armónicos triple-N. Cuando estos se reflejan en un bobinado en triángulo están todos en fase, así que las corrientes armónicas triple-N circulan por este bobinado. Los armónicos triple-N son absorbidos eficazmente en el bobinado y no se propagan aguas arriba a la línea de suministro, de modo que los transformadores con bobinado en triángulo son útiles como transformadores de aislamiento.

El estándar IEEE C57.12.00-1980, "General Requirements for Liquid- Inmersed Distribution, Power and Regulating Transformers", el cual propone como límite máximo del 5% para distorsión de la forma de onda de corriente para la carga manejada por el transformador y como límite para el sobrevoltaje rms que el transformador debe de soportar en estado estable es del 10 % sin carga y de 5 % con carga. Hay que destacar que las componentes armónicas dependen de la frecuencia y, por ende, las pérdidas se aumentan con el incremento de la frecuencia de manera que a frecuencias altas las pérdidas serán mayores que a frecuencias bajas produciendo un calentamiento adicional en la máquina. Por lo tanto, es necesario vincular el efecto de las cargas no lineales con el incremento en la temperatura del transformador y con su respectiva disminución de vida útil. (Bardales.J.V, 2010)

Las corrientes armónicas que circulan en los transformadores generan un incremento de las pérdidas en los devanados por efecto Joule y de las pérdidas del hierro debidas a las corrientes de Foucault. Y también, las distorsiones armónicas de tensión provocan pérdidas del hierro debido a la histéresis. En primera instancia, se puede decir que las pérdidas en el núcleo varían linealmente en función de la THD de tensión y que las pérdidas en los devanados varían como el cuadrado de la THD de corriente (Schneider Electric).

Los efectos de las corrientes armónicas sobre los trasformadores se debe considerar su capacidad en forma reducida con respecto a su nominal, cuando alimentan cargas no lineales de acuerdo con la norma ANSI/IEEE C.57.110 y del mismo modo, las pérdidas adicionales causadas en el núcleo debido a la distorsión en voltaje no se consideran porque su impacto es poco significativo. (Tellez Ramírez)

La mayoría de los transformadores están diseñados para operar con corriente alterna a una frecuencia fundamental (50 ó 60 Hz), lo que implica que operando en condiciones de carga nominal y con una temperatura no mayor a la temperatura ambiente especificada, el transformador debe ser capaz de disipar el calor producido por sus pérdidas sin sobrecalentarse ni deteriorar su vida útil. (Dariel, 2013)

Normalmente los transformadores están diseñados para operar con una carga de corriente de frecuencia de 50/60 Hz. Al ser más alta su frecuencia, la corriente armónica provoca un mayor calentamiento con la misma corriente. (Acevedo Donoso, 2013)

Las pérdidas en los transformadores consisten en pérdidas sin carga o de núcleo y pérdidas con carga, que incluyen las pérdidas I²R pérdidas por corrientes de Eddy y pérdidas adicionales en el tanque, sujetadores, u otras partes de hierro. (Llamas & Tejada, 2015)

Pérdidas sin carga o de núcleo: se producen por el voltaje de excitación en el núcleo. La forma de onda de voltaje en el primario es considerada senoidal independientemente de la corriente de carga, por lo que no se considera que aumentan para corrientes de carga no senoidales. Aunque la corriente de magnetización consiste en armónicas, éstas son muy pequeñas comparadas con las de la corriente de carga, por lo que sus efectos en las pérdidas totales son mínimos.

Pérdidas I²R: si la corriente de carga contiene componentes armónicas, entonces estas pérdidas también aumentarán por el efecto piel.

34

Pérdidas por corrientes de Eddy: son proporcionales al cuadrado de la corriente de carga y al cuadrado de la frecuencia, razón por la cual se puede tener un aumento adicional de pérdidas en los devanados que conducen corrientes de carga no senoidal y del mismo modo se incrementa su temperatura (Díaz P, Arcila, & Steblina, 2008). Estas pérdidas se muestran en la siguiente fórmula:

$$P_{EC} = P_{EC,R} \sum_{h=1}^{h=h_{max}} \left[\frac{I_h}{I_R}\right]^2 h^2$$
(42)

Donde:

h: Orden del armónico $(1,2,3,\ldots,h_{max})$.

h_{max}: Máximo orden del armónico a ser considerado.

I_h: Valor eficaz del armónico h-ésimo de corriente (A).

I_R: Corriente nominal del secundario (A).

PEC, R: Pérdidas por corrientes de Eddy a corriente y frecuencia nominales.

PEC: Pérdidas por corrientes de Eddy en condiciones no sinusoidales.

Las pérdidas por corrientes parásitas que se produce en las partes estructurales del transformador (excepto en los devanados) se denomina otras pérdidas adicionales. Estas pérdidas se originan en partes estructurales tales como el tanque, envoltura y abrazaderas. (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014)

En presencia de corrientes no sinusoidales, el valor de las otras pérdidas adicionales cambia con el cuadrado del valor RMS de la corriente y con la frecuencia de los armónicos elevada a 0.8 (S.B.Sadati, A.Tahani, B.Darvishi, H.Yousefi, & M.Dargahi, 2008) (M.Shareghi, B.T.Phung, M.S.Naderi, E.Ambikairajah, & T.R.Blackburn, 2012):

$$P_{OSL} = P_{OSL,R} \sum_{h=1}^{h=h\max} \left[\frac{I_h}{I_R}\right]^2 h^{0.8}$$
(43)

Donde:

P_{OSL, R}: Pérdidas adicionales a corriente y frecuencia nominales. P_{OSL}: Pérdidas adicionales por corrientes parásita. Para transformadores que operarán bajo condiciones de carga no lineal, es conveniente en lugar de sobredimensionar el transformador, utilizar un transformador con un factor K mayor a 1. (Llamas & Tejada, 2015)

Estos transformadores son aprobados por UL (Underwriter's Laboratory) para su operación bajo condiciones de carga no senoidal, puesto que operan con menores pérdidas a las frecuencias armónicas. Entre las modificaciones con respecto a los transformadores normales están:

- a) El tamaño del conductor primario se incrementa para soportar las corrientes armónicas circulantes. Por la misma razón se dobla la sección del conductor neutro.
- b) Utilizando conductores secundarios aislados de menor calibre, devanados en paralelo y transpuestos para reducir el calentamiento por el efecto piel.

El factor K se puede encontrar mediante un análisis armónico de la corriente de la carga o del contenido armónico estimado de la misma. (Díaz P, Arcila, & Steblina, 2008) describe el factor K en la siguiente ecuación (IEEE std C57.110, 2008):

factor
$$K = \sum_{h=1}^{h=h \max} [I_{h (pu)}]^2 h^2$$
 (44)

Donde:

h: Orden del armónico. I_{h (pu)}: Corriente armónica en p.u. tomando como base la corriente I_{rms}.

Con el valor del factor K de la corriente de la carga, se puede escoger el transformador adecuado. La tabla 7 muestra los valores comerciales de transformadores con factor K.

K	4
K	9
K	13
K	20
K	30
K	40

Tabla 7. Transformadores con factor K disponibles comercialmente.

Fuente: (Llamas & Tejada, 2015).

El factor K permite evaluar el efecto que las corrientes armónicas tienen en el calentamiento del transformador. Para el análisis de transformadores monofásicos existentes el factor K es igual a 1, lo que indica la no presencia de armónicos. En consecuencia, cuanto más alto es el factor K, mayor es el efecto de calentamiento producido por los armónicos.

El diseño de los transformadores que tienen un K-Factor (propuesto por los fabricantes de transformadores americanos) especificado en placa es tal, que se minimizan las pérdidas por corrientes de Eddy en los conductores, entre otras cosas.

Estos transformadores difieren de los transformadores normales debido a que tienen una capacidad térmica adicional que le permite tolerar los efectos térmicos debidos a las corrientes armónicas.

5. MATERIALES Y MÉTODOS.

Los materiales que usan se describen a continuación:

- Software de ingeniería MATLAB.
- Artículos científicos.

Los métodos que se usarán son la base para la presente investigación, utilizando el método deductivo, método de análisis y método de síntesis que permitirán la realización de cada uno de los objetivos planteados.

5.1. MÉTODOS DE CÁLCULO.

5.1.1. EVALUACIÓN ANALÍTICA DEL TRANSFORMADOR APLICANDO LA NORMA ANSI/IEE C57.110.

5.1.1.1. Introducción.

La norma ANSI/IEEE C57.110TM-2008 denominada como "*Procedimiento recomendado para la determinación de la capacidad del transformador bajo cargas no sinusoidales*" proporciona un procedimiento para determinar la verdadera capacidad de un transformador cuando opera bajo cargas no sinusoidales. Este procedimiento determina el nivel de reducción de la corriente nominal producto del aumento de armónicos y también es una metodología que permite encontrar la capacidad adecuada de un transformador (sumergido en aceite) que alimenta cargas no lineales para evitar la reducción de vida del equipo (Romero.H., 2013).

5.1.1.2. Pérdidas del transformador.

Los estándares IEEE std C57.12.90 y IEEE std C57.12.91 categorizan las pérdidas de los transformadores como pérdidas sin carga (pérdidas por excitación) y pérdidas con carga (pérdidas por impedancia) y define las pérdidas totales como la sumatoria de las pérdidas sin carga y las pérdidas con carga (IEEE std C57.110, 2008).

$$P_T = P_{NL} + P_{LL} \tag{45}$$

Donde:

PT: Pérdidas totales.PNL: Pérdidas sin carga.PLL: Pérdidas con carga.

Las pérdidas con carga se subdividen en pérdidas por I²R y pérdidas parásitas. En las pérdidas parásitas están incluidas las pérdidas por corrientes de Eddy (PEC) y pérdidas parásitas en otros componentes diferentes al devanado (POSL). Se define el total de pérdidas con carga con la siguiente ecuación (IEEE std C57.110, 2008):

$$P_{LL} = I^2 R + P_{EC} + P_{OSL} \tag{46}$$

Donde:

P_{LL}: Pérdidas con carga.

I²R: Pérdidas debidas a las corrientes de carga en los devanados.

P_{EC}: Pérdidas por corrientes parásitas en los devanados (Eddy).

P_{OSL}: Otras pérdidas adicionales en las partes estructurales del transformador (tanque, abrazaderas, etc.).

Las pérdidas I²R se pueden encontrar midiendo la resistencia dc del devanado y multiplicándolo por la corriente de carga.

5.1.1.3. Efecto de los armónicos en pérdidas con carga.

5.1.1.3.1. Efectos de los armónicos en las pérdidas I²R.

Si el valor RMS de la corriente de carga aumenta debido a componentes armónicos, entonces las pérdidas deberían incrementarse. Estás pérdidas bajo condiciones armónicas podría representarse así (IEEE std C57.110, 2008):

$$P_{I^{2}R} = R_{dc} * I^{2} = R_{dc} * \sum_{h=1}^{h=h_{max}} I_{h}^{2}_{max}$$
(47)

Donde:

 $P_I^2_R$: Pérdidas óhmicas.

- R_{dc} : Resistencia del devanado medida con corriente directa (Ω).
- I: Valor rms de la corriente de carga (A).
- h: Orden armónico, desde 1 hasta $h_{máx}$.

5.1.1.3.2. Efectos de los armónicos en las pérdidas por corriente de Eddy.

Las pérdidas por corrientes de Eddy son proporcionales al cuadrado de la corriente y la frecuencia armónica en condiciones armónicas y pueden calcularse como (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014):

$$P_{EC} = P_{EC-R} * \sum_{h=1}^{h=h_{max}} h^2 \left[\frac{I_h}{I_R}\right]^2$$
(48)

Donde:

P_{EC-R:} Pérdidas nominales por corrientes parásitas en los devanados (W).

I_h: Corriente del h-ésimo armónico (A).

 I_R : Corriente nominal (A).

5.1.1.3.3. Efectos de los armónicos en otras pérdidas parásitas.

Las pérdidas parásitas son asumidas que varían con el cuadrado de la corriente RMS y la frecuencia armónica a un factor de 0,8, o sea (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014):

$$P_{OSL} = P_{OSL,R} \sum_{h=1}^{h=h \max} \left[\frac{I_h}{I_R}\right]^2 h^{0.8}$$
(49)

Donde:

POSL, R: Pérdidas adicionales a corriente y frecuencia nominales.

POSL: Pérdidas adicionales por corrientes parásitas.

5.1.1.3.4. Factor de armónico para las pérdidas por corrientes de Eddy (F_{HL}).

Como resultado de la corriente armónica de carga RMS, existe un factor aplicado que es proporcional a las pérdidas por corrientes de Eddy. Este factor es conocido como F_{HL} . El F_{HL} es la relación entre las pérdidas por corrientes de Eddy debida a los armónicos (PEC) y las pérdidas por corrientes de Eddy a frecuencia del sistema cuando no existen corrientes armónicas (PEC-O). Esto se puede expresar de la siguiente manera (IEEE std C57.110, 2008):

$$F_{HL} = \frac{P_{EC}}{P_{EC-O}} * \frac{\sum_{h=1}^{h=h_{max}} h^2 [I_h]^2}{\sum_{h=1}^{h=h_{max}} [I_h]^2}$$
(50)

Donde:

P_{EC-O}: Pérdidas por unidad de corriente de Foucault en frecuencia de potencia.

Para el cálculo del factor de armónico adaptado para la corriente de carga fundamental tenemos que (IEEE std C57.110, 2008):

$$F_{HL} = \frac{\sum_{h=1}^{h=h_{max}} h^2 \left[\frac{I_h}{I}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_h}{I}\right]^2}$$
(51)

5.1.1.3.5. Factor de armónico para otras pérdidas parásitas (FHL-STR).

En transformadores sumergidos en aceite las pérdidas pueden tener efectos sustanciales debido a que producen calentamiento adicional al líquido refrigerante. Expresada por la siguiente ecuación (IEEE std C57.110, 2008):

$$F_{HL-STR} = \frac{\sum_{h=1}^{h=h_{max}} h^{0.8} \left[\frac{I_h}{I}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_h}{I}\right]^2}$$
(52)

5.1.1.4. Evaluación de pérdidas y capacidad de transformadores bajo cargas armónicas.

En condiciones sinusoidales se aplica la ecuación 53 para calcular las pérdidas con carga nominal (Romero.H., 2013):

$$P_{LL-R}(p.u.) = 1 + P_{EC-R}(p.u.) + P_{OSL-R}(p.u.)$$
(53)

Donde:

P_{LL-R:} Pérdidas con carga nominal.

1: Pérdidas debidas a las corrientes de carga en los devanados.

P_{EC-R}: Pérdidas por corrientes parásitas en condiciones nominales.

POSL-R: Otras pérdidas adicionales en condiciones nominales.

Ahora bien, en condiciones no sinusoidales se tiene (Romero.H., 2013):

$$P_{LL}(p.u) = I^{2}(p.u) * [1 + F_{HL} * P_{EC-R}(p.u) + F_{HL-STR} * P_{OSL-R}(p.u)]$$
(54)

Por lo tanto, la corriente máxima permisible para determinar la capacidad del transformador ante corrientes no sinusoidales se obtiene con la siguiente ecuación (Romero.H., 2013):

$$I_{max}(pu) = \sqrt{\frac{P_{LL-R}(pu)}{1 + [F_{HL} * P_{EC-R}(pu)] + [F_{HL-STR} * P_{OSL-R}(pu)]}}$$
(55)

Haciendo uso de la ecuación 55 se encuentra la corriente máxima permisible y se puede determinar la potencia del transformador cuando alimenta cargas no lineales para no deteriorar su vida útil.

5.1.1.5. Procedimiento recomendado por la norma ANSI/IEE C57.110 para evaluar la capacidad de un transformador existente.

Para evaluar la capacidad de carga de un transformador sumergido en aceite mediante la norma ANSI/IEEE C57.110 es necesario tener un certificado de pruebas del fabricante para transformadores particulares y un estudio de análisis de carga para conocer el espectro armónico de la carga del equipo (IEEE std C57.110, 2008).

Cálculo típico para transformadores sumergidos en aceite:

Paso 1. Es necesario disponer de los parámetros reportados en el registro de pruebas del equipo, estos parámetros se muestran en la tabla 8 (IEEE std C57.110, 2008).

Potencia (kVA)	Тіро	Tensión en primario (kV)	Tensión en secundario (kV)	Corriente en primario (A)
Corriente en secundario (A)	Pérdidas con carga (W)	Pérdidas en vacío (W)	R ₁ (Ω)	R ₂ (Ω)

Tabla 8. Parámetros reportados en el certificado de pruebas.

Fuente: (Romero.H., 2013).

Paso 2. Calcular las pérdidas parásitas totales con la siguiente ecuación (IEEE std C57.110, 2008):

$$P_{TSL-R} = P_{LL-R} - K * [I_1^2 R_1 + I_2^2 R_2]$$
(56)

Donde:

P_{TSL-R}: Total de pérdidas parásitas bajo condiciones nominales.

P_{LL-R:} Pérdidas con carga bajo condiciones nominales.

I₁: Corriente de línea en el lado primario bajo condiciones de carga y frecuencia nominal.

I₂: Corriente de línea en el lado secundario bajo condiciones de carga y frecuencia nominal.

R₁: Resistencia dc medida entre dos terminales del lado primario.

R₂: Resistencia dc medida entre dos terminales del lado secundario.

K: Constante que depende del número de fases (K=1 para transformadores monofásicos).

Paso 3. Calcular las pérdidas por corrientes de Eddy bajo condiciones nominales de la siguiente forma (IEEE std C57.110, 2008):

$$P_{EC-R} = P_{TSL-R} * 0.33 \tag{57}$$

Donde:

P_{TSL-R}: Total de pérdidas parásitas bajo condiciones nominales.

P_{EC-R:} Pérdidas por corrientes de Eddy bajo condiciones nominales.

Paso 4. Calcular las otras pérdidas parásitas por corrientes de Eddy en por unidad (IEEE std C57.110, 2008):

$$P_{OSL-R} = P_{TSL-R} - P_{EC-R} \tag{58}$$

Donde:

P_{OSL-R}: Otras pérdidas parásitas bajo condiciones nominales.

P_{TSL-R:} Total de pérdidas parásitas bajo condiciones nominales.

P_{EC-R:} Pérdidas por corrientes de Eddy bajo condiciones nominales.

Paso 5. Es necesario tener la distribución armónica para la máxima corriente de carga del equipo, se visualiza en la tabla 10. (Romero.H., 2013)

Tabla 9. Espectro armónico para transformadores sumergidos en aceite.

		ESPI	ECTRO ARMÓ	ÓNICO		
h	$\frac{I_h}{I_1}$	$\left(\frac{I_h}{I_1}\right)^2$	h^2	$\left(\frac{l_h}{l_1}\right)^2 h^2$	$h^{0.8}$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$

Fuente: (Romero.H., 2013).

A partir de la tabla 9 se obtienen los valores de F_{HL} y F_{HL-STR} aplicando las ecuaciones 51 y 52.

Paso 6. Calcular las pérdidas a partir del espectro armónico presentado anteriormente y la tabulamos en la tabla 10 (IEEE std C57.110, 2008).

Tipo de carga	Pérdida nominal (W)	Pérdida con carga bajo corriente armónica (W)	Factor de Pérdida armónica	Pérdida con carga bajo corrección armónica (W)
Sin carga				
I ² R				
Corriente de				
Eddy en				
devanados				
Otras pérdidas				
Total				

Tabla 10. Cálculo de pérdidas para transformadores sumergidos en aceite.

Fuente: (Romero.H., 2013).

Paso 7. Finalmente se aplican las ecuaciones 53, 54 y 55 para obtener la corriente máxima en p.u. y a partir de aquí obtener el valor de corriente de carga y potencia adecuada para el transformador (Romero.H., 2013).

5.2. DESARROLLO DE UN ALGORITMO PARA EL CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN MONOFÁSICOS.

El objetivo del presente procedimiento de cálculo es obtener un algoritmo (sucesión de operaciones necesarias para hallar los valores de la variables y parámetros deseados) que permita calcular las pérdidas adicionales causadas por las armónicas de corriente en los trasformadores de distribución monofásicos de forma secuencial.

El algoritmo se basa en la metodología de Lee y Christensen. Un aspecto importante de esta metodología es identificar los grados de libertad del sistema, es decir, las variables de diseño (FRAGA, GONZÁLEZ, & BRAVO, pág. 101).

Se debe identificar los grados de libertad y para ello se establece que las relaciones del modelo se denominan N y las variables M.

Las relaciones del modelo son N = 35, quedando resumidas en la tabla 11:

$P_{TSL-R} = P_{LL-R} - K * [I_1^2 R_1 + I_2^2 R_2]$	1
$P_{EC-R} = P_{TSL-R} * 0.33$	2
$P_{OSL-R} = P_{TSL-R} - P_{EC-R}$	3
$P_{DC} = {I_1}^2 R_1 + {I_2}^2 R_2$	4
$P_{ECI-R1} = 0.4 * P_{ECR}$	5
$P_{ECI-R2} = 0.6 * P_{ECR}$	6
$F_{HLA} = \frac{\sum_{h=1}^{h=h_{max}} h_A^2 \left[\frac{I_{hA}}{I_R}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_{hA}}{I_R}\right]^2}$	7
$F_{HLB} = \frac{\sum_{h=1}^{h=h_{max}} h_B^2 \left[\frac{I_{hB}}{I_R}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_{hB}}{I_R}\right]^2}$	8
$F_{HLA-STR} = \frac{\sum_{h=1}^{h=h_{max}} h_A^{0.8} \left[\frac{I_{hA}}{I_R}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_{hA}}{I_R}\right]^2}$	9
$F_{HLB-STR} = \frac{\sum_{h=1}^{h=h_{max}} h_B^{0.8} \left[\frac{I_{hB}}{I_R}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_{hB}}{I_R}\right]^2}$	10
$I_A(p.u.) = \sqrt{\sum_{h=1}^{h=h_{max}} \left(\frac{I_{hA}}{I_R}\right)^2}$	11

Tabla 11. Relaciones del modelo matemático.

$$\begin{split} I_{B}(p.u.) &= \sqrt{\sum_{h=1}^{h=h_{max}} \left(\frac{l_{hB}}{l_{R}}\right)^{2}} & 12 \\ P_{ECA} &= P_{EC-R} + \sum_{h=1}^{h=h_{max}} h_{A}^{2} \left[\frac{l_{hA}}{l_{R}}\right]^{2}} & 13 \\ P_{ECB} &= P_{EC-R} + \sum_{h=1}^{h=h_{max}} h_{B}^{2} \left[\frac{l_{hB}}{l_{R}}\right]^{2}} & 14 \\ P_{OSLA} &= P_{OSL-R} + \sum_{h=1}^{h=h_{max}} h_{A}^{0.8} \left[\frac{l_{hA}}{l_{R}}\right]^{2}} & 15 \\ P_{OSLB} &= P_{OSL-R} + \sum_{h=1}^{h=h_{max}} h_{B}^{0.8} \left[\frac{l_{hB}}{l_{R}}\right]^{2}} & 16 \\ P_{EC-RA}(p.u.) &= P_{EC-R}/P_{ECA} & 17 \\ P_{EC-RB}(p.u.) &= P_{EC-R}/P_{ECB} & 18 \\ P_{OSL-RA}(p.u.) &= P_{EC-R}/P_{ECB} & 18 \\ P_{OSL-RA}(p.u.) &= P_{OSL-R}/P_{OSLA} & 19 \\ P_{OSL-RA}(p.u.) &= P_{OSL-R}/P_{OSLA} & 19 \\ P_{OSL-RA}(p.u.) &= 1 + P_{EC-RA}(p.u.) + P_{OSL-RA}(p.u.) & 21 \\ P_{LL-RA}(p.u.) &= 1 + P_{EC-RA}(p.u.) + P_{OSL-RA}(p.u.) & 22 \\ I_{maxA}(p.u.) &= \sqrt{\frac{P_{LL-RA}(p.u.)}{1 + [F_{HLA} * P_{EC-RB}(p.u.)] + [F_{HL-STR1} * P_{OSL-RB}(p.u.)]}{1 \\ I_{maxB}(p.u.) &= \sqrt{\frac{P_{LL-RA}(p.u.)}{1 + [F_{HLA} * P_{EC-RB}(p.u.)] + [F_{HL-STR1} * P_{OSL-RB}(p.u.)]}{1 \\ I_{maxA}(p.u.) &= \sqrt{\frac{P_{LL-RA}(p.u.)}{1 + [F_{HLA} * P_{EC-RB}(p.u.)] + [F_{HL-STR1} * P_{OSL-RB}(p.u.)]}}{23 \\ I_{maxB}(p.u.) &= I_{A}(p.u.)^{2} \left[1 + \frac{F_{HLA}(\frac{P_{EC-R}}{2})}{\frac{P_{dC}}} + \frac{F_{HLA-STR}(\frac{P_{OSL-R}}{2})}{\frac{P_{dC}}}}\right] & 27 \\ P_{LLHB}(p.u.) &= I_{B}(p.u.)^{2} \left[1 + \frac{F_{HLB}(\frac{P_{EC-R}}{2})}{\frac{P_{dC}}} + \frac{F_{HLB-STR}(\frac{P_{OSL-R}}{2})}{\frac{P_{dC}}}}\right] & 28 \\ \end{array}$$

$P_{LLTH} = (P_{LLHA}(p.u.) + P_{LLHB}(p.u.))\frac{P_{dc}}{2}$	29
$P_H = P_{NL} + P_{LLTH}$	30
$P_{LLA}(p.u.) = I_A(p.u.)^2 \left[1 + \frac{\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$	31
$P_{LLB}(p.u.) = I_B(p.u.)^2 \left[1 + \frac{\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$	32
$P_{LLT} = (P_{LLA}(p.u.) + P_{LLB}(p.u.))\frac{P_{dc}}{2}$	33
$P = P_{NL} + P_{LLT}$	34
$\Delta_{PLL} = P_H - P$	35

Las variables del modelo son M = 47 y se resumen a continuación:

P_{TSL-R}: Total de pérdidas parásitas bajo condiciones nominales.

P_{LL-R:} Pérdidas con carga bajo condiciones nominales.

P_{NL:} Pérdidas en vacío bajo condiciones nominales.

I1: Corriente nominal en el lado primario bajo condiciones de carga y frecuencia nominal.

I₂: Corriente nominal en el lado secundario bajo condiciones de carga y frecuencia nominal.

R₁: Resistencia dc medida entre dos terminales del lado primario.

R₂: Resistencia dc medida entre dos terminales del lado secundario.

K: Constante que depende del número de fases (K=1 para transformadores monofásicos).

P_{EC-R:} Pérdidas nominales por corrientes parásitas en los devanados.

P_{ECI-R1:} Pérdidas nominales por corrientes parásitas en el devanado primario.

P_{ECI-R2:} Pérdidas nominales por corrientes parásitas en el devanado secundario.

POSL-R: Otras pérdidas parásitas bajo condiciones nominales.

P_{DC}: Son las pérdidas en las resistencias de los devanados.

h_A: Orden armónico 1,2,3, etc de la fase A.

h_B: Orden armónico 1,2,3, etc de la fase B.

Ih_A: Corriente del h-ésimo armónico de la fase A.

Ih_B: Corriente del h-ésimo armónico de la fase B.

IR: Corriente nominal del devanado secundario.

F_{HLA}: Factor de armónico para las pérdidas por corrientes de Eddy de la fase A.

F_{HLB}: Factor de armónico para las pérdidas por corrientes de Eddy de la fase B.

F_{HLA-STR:} Factor de armónico para otras pérdidas parásitas de la fase A.

F_{HLB-STR:} Factor de armónico para otras pérdidas parásitas de la fase B.

I_A (p.u.): Corriente del secundario de carga no sinusoidal en por unidad de la fase A.

I_{B (}p.u.): Corriente del secundario de carga no sinusoidal en por unidad de la fase B.

PECA: Las pérdidas por corrientes de Eddy en condiciones armónicas de la fase A.

P_{ECB}: Las pérdidas por corrientes de Eddy en condiciones armónicas de la fase B.

P_{OSLA}: Otras pérdidas adicionales en las partes estructurales del transformador bajo condiciones armónicas de la fase A.

P_{OSLB}: Otras pérdidas adicionales en las partes estructurales del transformador bajo condiciones armónicas de la fase B.

P_{EC-RA} (p.u.): Pérdidas nominales por corrientes parásitas por unidad en los devanados de la fase A.

P_{EC-RB} (p.u.): Pérdidas nominales por corrientes parásitas por unidad en los devanados de la fase B.

P_{OSL-RA} (p.u.): Otras pérdidas parásitas bajo condiciones nominales por unidad de la fase A.

P_{OSL-RB} (p.u.): Otras pérdidas parásitas bajo condiciones nominales por unidad de la fase B.

48

 $P_{LL-RA}(p.u.)$: Las pérdidas con carga por unidad sin armónicos y en condiciones nominales de la fase A.

 $P_{LL-RB}(p.u.)$: Las pérdidas con carga por unidad sin armónicos y en condiciones nominales de la fase B.

 $I_{maxA}(p. u)$: La corriente permitida para el transformador de la fase A.

 $I_{maxB}(p, u)$: La corriente permitida para el transformador de la fase B.

 I_{maxA} : La corriente máxima que soportará el equipo ante la presencia del espectro armónico de la fase A.

 I_{maxB} : La corriente máxima que soportará el equipo ante la presencia del espectro armónico de la fase B.

P_{LLHA} (p.u.): Pérdidas con cargas totales por unidad en condiciones no sinusoidales de la fase A.

P_{LLHB} (p.u.): Pérdidas con cargas totales por unidad en condiciones no sinusoidales de la fase B.

P_{LLTH}: Pérdidas con carga totales cuando un transformador suple una carga armónica.

P_H: Pérdidas totales con armónicos.

P_{LLA} (p.u.): Pérdidas con cargas totales por unidad en condiciones sinusoidales de la fase A.

P_{LLB} (p.u.): pérdidas con cargas totales por unidad en condiciones sinusoidales de la fase B.

PLLT: Pérdidas con cargas totales en condiciones sinusoidales.

P: Pérdidas totales sin armónicos.

 Δ_{PLL} : Incremento de pérdidas por circulación de armónicos.

Existen ecuaciones asimétricas, debido a que están compuestas por variables que no se pueden despejar para ser calculadas, esto es por ser valores preestablecidos, pertenecientes a tablas, valores enteros o características de un elemento. Estas variables son:

- Los parámetros de la placa del transformador (I1, I2, R1, R2, PLL-R, PNL, S, V1, V2,).
- Constante que depende del número de fases (K=1 para transformadores monofásicos).
- Corriente del h-ésimo armónico (Ih_A, Ih_B).
- Orden Armónico (h_A, h_B).

Por lo expuesto, estas variables son consideradas como grados de libertad en la secuencia de cálculo expuesta en la tabla 12.

De acuerdo con la metodología de Lee y Christensen, la matriz estructural queda de la siguiente manera y se muestra en la tabla 12.

	1 1	1	1	1 1	1		1	1 1	1		1	I			-	1		- I			1	1	I	1	1	1	1	1	1	1	1	1	1	-		1	I			1	I I I I I I I I I I I I I I I I I I I			-	
	\mathbf{I}_1	I ₂ I _F	R R1	\mathbf{R}_2	к	P _{TSL-} R	P _{LL-} R	P NL	P _{EC-} R	P _{ECI-} R1	P _{ECI-} R2	P _{OSL-} R	P _{DC}	h _A h _B	I _{hA}	I _{hB}	F _{HL}	F _H LB	F _{HLA-} str	F _{HLB-} str	I _A (p.u)	I _B (p.u)	P _{EC}	P _E cb	P _{OSL}	P _{OSL}	P _{EC-} RA(p.u)	P _{EC-} RB(p.u)	P _{OSL-} RA(p.u)	P _{OSL-} RB(p.u)	P _{LL-} RA	P _{LL-} _{RB}	I _{maxA} (p.u)	I _{maxB} (p.u)	I _{maxA}	I _{maxB}	P _{LLHA} (p.u)	P _{LLHB}	P _{llth}	P _H	P _{LLA} P ₁ (p.u) (p	LLB]	P _L _{LT} P	$\Delta P_{\rm I}$	LL
																																												<u> </u>	
1	Х	Х	Х	Х	х	Х	Х																																					\bot	
2						Х			Х																																				
3						Х			х			Х																																	
4	х	х	Х	Х									Х																																
5									Х	Х																																			
6									Х		Х																																		_
7		x x	(х	х		х																												
8		x x	(х		х		х																										1	_
9		x x	:											х	x				Х																										
10		x x	:											x		x				x																								1	_
11		x x	:												x						x																							+	_
12		x x														x						x																						+	_
13		x x	,						х					x	x	~							x																					+	—
14		x x	,						x					x		x							~	x																				+	
15		x x	,						~			x		x	x	~								-	x																			+	
16		x x	,									x		x		x										x																+		-	
17									x			~		~	+								x	+			x																	+	
18			-						x														~	x				x														+		+	—
10			-						~			v			+										v				v															+	—
20												x													~	v			~	v												+		+	
20			_									^															v		v	^	v													+	
21																											^		^		^	v												+	_
22	$\left \right $	-	-																v					-	-							^	v									\rightarrow	_	+	
23			-														^	v	^	v							^		^		^	v		v								+		+	
24		v	-															^		^				-								^	v	^	v							+	_	+	
25		^ V	_																														^	v	^	v								+	
20		X							v			v					v		V		v													X		X	v							+	_
27									X			X	X				×	v	X		X																X	V						+	_
28			_						X			X	X					X		X		X		-														X						+	
29			_										X																								Х	Х	X					<u> </u>	
30			_					х																															X	Х				<u> </u>	
31		_	_	$\left \right $					Х			X	X								X			<u> </u>				-		-											X	\rightarrow		–	_
32									Х			X	Х		<u> </u>							Х		_																		X		⊢	
33													Х		<u> </u>									<u> </u>				<u> </u>		<u> </u>											X	X	Х	⊢	
34								Х																		ļ																	X X	\vdash	
35															1									1																Х				Х	

Tabla 12. Matriz estructural del modelo matemático planteado (Metodología de Lee Christensen).

Los grados de libertad (F) de la secuencia de cálculos del procedimiento planteado son:

$$F = M - N = 47 - 35$$
$$F = 12$$

Como ya se mencionó anteriormente, algunos de estos grados de libertad son de orden discreto y otros son fijados como parámetros de diseño. A continuación, se detallan los mismos:

- Grados de libertad como variables fijas del diseño (7): R₁, R₂, P_{LL}, P_{NL}, K, I₁, I₂.
- Grados de libertad adicionales (Variables discretas, coeficientes, de control, etc).
 (5): h_A, h_B, Ih_A, Ih_B, I_R.

De acuerdo con lo anterior, es necesario reescribir la nueva matriz estructural, que se muestra en la tabla 13, y establecer el algoritmo de solución.

Tabla 13. Matriz estructural reducida (metodología de Lee y Christensen).

	1							1	1	1	1	1	1			1	1	1	1			1								1				<u>г</u> т	
	P _{TSL-} R	P _{EC-} R	P _{ECI-} R1	P _{ECI-} R2	P _{OSL-} R	P _{DC}	F _{HLA}	F _{HLB}	F _{HLA-} str	F _{HLB-} str	I _A (p.u)	I _B (p.u)	P _{ECA}	P _{ECB}	P _{OSLA}	P _{OSLB}	P _{EC-} RA(p.u)	P _{EC-} RB(p.u)	P _{OSL-} RA(p.u)	P _{OSL-} RB(p.u)	P _{LL-} RA	P _{LL-} rb	I _{maxA} (p.u)	I _{maxB} (p.u)	I _{maxA}	I _{maxB}	P _{LLHA} (p.u)	P _{LLHB} (p.u)	P _{llth}	P _H	P _{LLA} (p.u)	P _{LLB} (p.u)	P _{LLT}	Р	ΔP_{LL}
1	Х																																		
2	Х	х																																	
3	Х	х			Х																														
4						Х																													
5		Х	Х																																
6		Х		Х																															
7							Х																												
8								Х																											
9									Х																										
10										Х																									
11											Х																								
12												Х																							
13		Х											Х																						
14		Х												Х																					
15					Х										Х																				
16					Х											Х																			
17		Х											Х				Х																		
18		Х												Х				Х																	
19					Х										Х				Х																
20					Х											Х				Х															
21																	Х		Х		Х														
22																		Х		Х		Х													
23							Х		Х								Х		Х		Х		Х												
24								Х		Х								Х		Х		Х		Х											
25																							Х		Х										
26																								Х		Х									
27		Х			Х	Х	Х		Х		Х																Х								
28		Х			Х	Х		Х		Х		Х																Х							
29						Х																					Х	Х	Х						
30																													Х	Х					
31		Х			Х	Х					Х																				Х				
32		Х			Х	Х						Х																				Х			
33						Х																									Х	Х	Х		
34																																	Х	Х	
35																														X					Х

A continuación, de la matriz presentada en la tabla 13 se localiza las columnas que contengan una sola X y se elimina de la matriz estructural reducida la(s) columna(s) y la(s) ecuación(es) correspondientes:

• $[5, P_{\text{ECI-R1}}]; [6, P_{\text{ECI-R2}}]; [25, I_{\text{maxA}}]; [26, I_{\text{maxB}}]; [34, P]; [35, \Delta P_{\text{LL}}], resultando la siguiente matriz que se muestra en la tabla 14:$

 Tabla 14. Segunda matriz estructural reducida.

	P _{TSL-} R	P _{EC-} R	P _{OSL-} R	P _{DC}	F _{HLA}	F _{HLB}	F _{HLA-} str	F _{HLB-} str	I _A (p.u)	I _B (p.u)	P _{ECA}	P _{ECA}	P _{OSLA}	P _{OSLB}	P _{EC-RA} (p.u)	P _{EC-RB} (p.u)	POSL-RA (p.u)	P _{OSL-RB} (p.u)	P _{LL-RA}	P _{LL-RB}	I _{maxA} (p.u)	I _{maxB} (p.u)	P _{LLHA} (p.u)	P _{LLHB} (p.u)	P _{LLTH}	\mathbf{P}_{H}	P _{LLA} (p.u)	P _{LLB} (p.u)	P _{llt}
1	Х																												
2	Х	Х																											
3	Х	Х	Х																										
4				Х																									
7					Х																								
8						Х																							
9							Х																						
10								Х																					
11									Х																				
12										Х																			
13		Х									Х																		
14		Х										Х																	
15			Х										Х																
16			Х											Х															
17		Х									Х				Х														
18		Х										Х				Х													
19			Х										Х				Х												
20			Х											Х				X											
21															Х		Х		Х										
22																Х		Х		Х									
23					Х		Х								Х		Х		Х		Х								
24						Х		Х								Х		X		Х		Х							
27		Х	Х	Х	Х		Х		Х														Х						
28		Х	Х	Х		Х		Х		Х														Х					
29				Х																			Х	Х	Х				
30																									Х	Х			
31		Х	Х	Х					Х																		Х		
32		Х	Х	Х						Х																		Х	
33				Х																							Х	Х	Х

De la matriz presentada en la tabla 14 se eliminan las siguientes ecuaciones y variables:

• $[23, I_{maxA}(p.u.)]; [24, I_{maxB}(p.u.)]; [30, P_H]; [33, P_{LLT}],$ resultando la matriz que se muestra en la tabla 15.

Tabla 15. Tercera matriz estructural reducida.

	P _{TSL-R}	P _{EC-R}	P _{OSL-R}	P _{DC}	F _{HLA}	F _{HLB}	F _{HLA-STR}	F _{HLB-STR}	I _{A (p.u.)}	I _{B (p.u.)}	P _{ECA}	P _{ECB}	P _{OSLA}	P _{OSLB}	PEC-RA (p.u.)	P _{EC-RB} (p.u.)	POSL-RA (p.u.)	P _{OSL-RB} (p.u.)	P _{LL-RA}	P _{LL-RB}	PLLHA (p.u.)	PLLHB (p.u.)	P _{LLTH}	P _{LLB (p.u.)}	P _{LLB (p.u.)}
1	Х																								
2	Х	Х																							
3	Х	Х	Х																						
4				Х																					
7					Х																				
8						Х																			
9							Х																		
10								Х																	
11									X																
12										Х															
13		Х									Х														
14		Х										Х													
15			Х										Х												
16			Х											Х											
17		Х									Х				Х										
18		Х										Х				Х									
19			Х										X				Х								
20			Х											Х				Х							
21															Х		Х		Х						
22																Х		Х		Х					
27		Х	Х	Х	Х		Х		Х												Х				
28		Х	Х	Х		Х		Х		Х												Х			
29				Х																	Х	Х	Х		
31		Х	Х	Х					х															Х	
32		Х	X	Х						x															Х

De la matriz presentada en la tabla 15 se eliminan las siguientes ecuaciones y variables:

• $[21, P_{LL-RA}]; [22, P_{LL-RB}]; [29, P_{LLTH}]; [31, P_{LLB}(p.u.)]; [32, P_{LLB}(p.u.)], resultando la matriz que se muestra en la tabla 16.$

 Tabla 16. Cuarta matriz estructural reducida.

	P _{TSL-R}	P _{EC-R}	P _{OSL-R}	P _{DC}	F _{HLA}	F _{HLB}	F _{HLA-STR}	F _{HLB-STR}	I _{A (p.u)}	I _{B (p.u)}	P _{ECA}	P _{ECB}	POSLA	Poslb	P _{EC-RA}	P _{EC-RB}	P _{OSL-}	P _{OSL-RB}	P _{LLHA}	P _{LLHB}
															(p.u)	(p.u)	RA (p.u)	(p.u)	(p.u)	(p.u)
1	X																			
2	Х	Х																		
3	Х	Х	Х																	
4				Х																
7					Х															
8						Х														
9							Х													
10								Х												
11									Х											
12										Х										
13		Х									Х									
14		Х										Х								
15			Х										Х							
16			Х											Х						
17		Х									Х				Х					
18		Х										Х				Х				
19			Х										Х				Х			
20			Х											Х				Х		
27		Х	Х	Х	Х		Х		Х										Х	
28		Х	Х	Х		Х		Х		Х										Х

De la matriz representada en la tabla 16, se eliminan las siguientes ecuaciones y variables:

[17, P_{EC-RA} (p.u.)]; [18, P_{EC-RB} (p.u.)]; [19, P_{OSLRA} (p.u.)]; [20, P_{OSLRB} (p.u.)]; [27, P_{LLHA} (p.u.)]; [28, P_{LLHB} (p.u.)], resultando la matriz que se muestra en la tabla 17.

	P _{TSL-} R	P _{EC-} R	P _{OSL-} R	P _{DC}	F _{HLA}	F _{HLB}	F _{HLA-} str	F _{HLB-} str	I _A (p.u.)	I _B (p.u.)	P _{ECA}	P _{ECB}	P _{OSLA}	P _{OSLB}
1	Х													
2	Х	Х												
3	Х	Х	Х											
4				Х										
7					Х									
8						Х								
9							Х							
10								Х						
11									Х					
12										Х				
13		Х									Х			
14		Х										Х		
15			Х										Х	
16			Х											Х

Tabla 17. Quinta matriz estructural reducida.
--

De la matriz representada en la tabla 17 se eliminan las siguientes ecuaciones y variables:

[7, F_{HLA}]; [8, F_{HLB}]; [9, F_{HLA-STR}]; [10, F_{HLB-STR}]; [11, I_A (p.u.)]; [12, I_B (p.u.)]; [13, P_{ECA}]; [14, P_{ECB}]; [15, P_{OSLA}]; [16, P_{OSLB}], resultando la matriz que se muestra en la tabla 18.

Tabla 18.	Sexta	matriz	estructural	reducida.
-----------	-------	--------	-------------	-----------

	P _{TSL-R}	P _{EC-R}	P _{OSL-R}	P _{DC}
1	Х			
2	Х	Х		
3	Х	Х	Х	
4				Х

De la matriz representada en la tabla 18 se eliminan las siguientes ecuaciones y variables:

• [3, P_{OSL-R}]; [4, P_{DC}], resultando la matriz que se muestra en la tabla 19.

	P _{TSL-R}	P _{EC-R}
1	X	
2	X	Х

Tabla 19. Séptima matriz estructural reducida.

De la matriz representada en la tabla 19 se elimina la siguiente ecuación y variable:

• [2, P_{EC-R}], resultando la última matriz y se muestra en la tabla 20.

	P _{TSL-R}	
1	Х	

Tabla 20. Octava matriz estructural reducida.

De la última matriz representada en la tabla 20 se elimina la siguiente ecuación y variable:

• [1, P_{TSL-R}]

La nueva secuencia de cálculo de solución del modelo anterior escrito o representado en un diagrama de Nassi-Schneiderman se muestra en la tabla 21 (FRAGA, GONZÁLEZ, & BRAVO):

Tabla 21. Diagrama de Nassi-Schneiderman del algoritmo de solución.

Asignar los valores fijos de las variables fijadas de diseño (7): R_1 , R_2 , P_{LL} , P_{NL} , K, I_1 , I_2 . Y los grados de libertad adicionales (5): h_1 , h_2 , Ih_1 , Ih_2 , I_R

[1, PTSL-R]

[2, PEC-R]

[3, POSL-R]; [4, PDC]

[7, F_{HLA}]; [8, F_{HLB}]; [9, $F_{HLA-STR}$]; [10, $F_{HLB-STR}$]; [11, I_A (p.u.)]; [12, I_B (p.u.)]; [13, P_{ECA}]; [14, P_{ECB}]; [15, P_{OSLA}]; [16, P_{OSLB}]

[17, P_{EC-RA} (p.u.)]; [18, P_{EC-RB} (p.u.)]; [19, P_{OSLRA} (p.u.)]; [20, P_{OSLRB} (p.u.)]; [27, P_{LLHA} (p.u.)]; [28, P_{LLHB} (p.u.)]

[21, P_{LL-RA}]; [22, P_{LL-RB}]; [29, P_{LLTH}]; [30, P_{LLA} (p.u.)]; [31, P_{LLB} (p.u.)];

 $[23, I_{maxA}(p.u.)]; [24, I_{maxB}(p.u.)]; [30, P_H]; [33, P_{LLT}]$

 $[5, P_{ECI-R1}]; [6, P_{ECI-R2}]; [25, I_{maxA}]; [26, I_{maxB}]; [34, P]; [35, \Delta P_{LL}]$

Para simplificar la secuencia de cálculo y obtener el algoritmo de solución se abrevian los siguientes términos que se muestran en la tabla 22.

$xA = \sum_{h=1}^{h=h_{max}} \left[\frac{I_{hA}}{I_R}\right]^2$	$xB = \sum_{h=1}^{h=h_{max}} \left[\frac{I_{hB}}{I_R}\right]^2$
$yA = \sum_{h=1}^{h=h_{max}} h_A^2 \left[\frac{I_{hA}}{I_R}\right]^2$	$yB = \sum_{h=1}^{h=h_{max}} h_B^2 \left[\frac{I_{hB}}{I_R}\right]^2$
$zA = \sum_{h=1}^{h=h_{max}} h_A^{0.8} \left[\frac{I_{hA}}{I_R}\right]^2$	$zB = \sum_{h=1}^{h=h_{max}} h_B^{0.8} \left[\frac{I_{hB}}{I_R}\right]^2$

Tabla 22. Simplificación de los términos para abreviar el algoritmo.

Mediante un flujograma queda resuelta la secuencia de cálculo del algoritmo, este se representa en un grafo dicromático que se indica en la figura 12.

Figura 12. Representación del algoritmo de solución mediante grafos dicromáticos.

5.3. MATLAB.

5.3.1. Creación de una GUI.

Una GUI es un entorno de programación visual disponible en MATLAB para realizar y ejecutar programas que necesiten ingreso continuo de datos. Tiene las características básicas de todos los programas visuales como Visual Basic o Visual C++.

Para iniciar un nuevo proyecto o crear una interfaz gráfica de usuario, es decir, un GUI (Graphical User Interface) se procede ejecutando la siguiente instrucción *guide* en la ventana de comandos de MATLAB como observamos en la figura 13.

New to MATI ADT Can recover for Cathing Control									
new to marked are resources for getting stated.									
e 22	guide								
	GUIDE Quick Start	- D X							
	Create New GUI Open Existing	GUI							
	GUIDE templates	Preview							
	Binnk GUI (Default) GUI with Dicontrols GUI with Axes and Menu Model Question Dialog	BLANK							
	Save new figure as C:Program Files\MATLA8\MATLA8 Product Trustee.								
		OK Cancel Help							

Figura 13. Ventana de inicio de GUI. Fuente: El Autor.

Al crear una aplicación GUIDE se crean los siguientes archivos:

- El archivo .*m* que contiene el código con las correspondencias de los botones de control de la interfaz.
- El archivo .*fig* que contiene los elementos gráficos.

En la figura 14, se observa el entorno de diseño de un nuevo proyecto GUI en blanco donde el usuario empieza a crear su interfaz gráfica.

「日間」を登場っ	の事際目	8 Þ	
h Select			1
III Push Button			
🚥 Slider			
Radio Button	_	 	
Check Box			
🝽 Edit Text	_		
💷 Static Text			
EB Pop-up Menu		 	
El Listico			
🔚 Toggle Button 🔄	_	 	
Table Table			
Aves	_		
The Panel			
🐴 Button Group		 	
X Activel Central			
-	_		

Figura 14. Entorno de diseño de GUI. Fuente: El Autor.

La tabla 23 muestra la descripción de los componentes.

Control	Valor de estilo	Descripción
		2 court priori
Check box	'checkbox'	Indica el estado de una opción o atributo
Editable text	'edit'	Caja para editar texto
Pop-up menu	'popupmenu'	Provee una lista de opciones
List Box	'listbox'	Muestra una lista deslizable
Push Button	'pushbutton'	Invoca un evento inmediatamente
Radio Button	'radio'	Indica una opción que puede ser seleccionada
Toggle Button	'togglebutton'	Solo dos estados, 'on' o 'off'
Slider	'slider'	Usado para representar un rango de valores
Static Text	'text'	Muestra un string de texto en una caja
Panel Button		Agrupa botones como un grupo
Button Group		Permite exclusividad de selección con los radios button

Tabla 23. Descripción de los componentes de una GUI.

Fuente: (Guerrero Barragán, 2010).

Cada uno de los componentes que se mencionó en la tabla 23 tienen un conjunto de opciones que se puede acceder, como se puede visualizar en la figura 15.

File Edit View Layout	Tools Help		
	○●要帮助回回求●		
Select			
mit Push Button			
em Sitder	· April Anno ·		
Radio Button	Cut	Crit+E	
Check Box	Copy	Chi+C	
🕫 Est Tet	Palle	Clife-V	
M Static Text	Cest	04.0	
C3 Pop-up Menu	odherana	-un+u	
HB Listhes	Bring to Front	Cut-F	
Toggle Button	Send to Back	Chi+B	
Table .	Object Skowper		
Ares	Editor		
1. Panel	View Callbacks		
1 Button Group	Reports Instantion		
X Actival Control	Push Button Property	ty Editor	
		Edit Push Button properties	—
C.			

Figura 15. Opciones del componente. Fuente: El Autor.

La opción *Property Inspector* nos permite personalizar cada componente de nuestra interfaz gráfica, las características que se pueden personalizar se muestran en la figura 16.

🌁 Inspector: matlab.ui.co	ntrol — 🗆	×
BackgroundColor		^
BeingDeleted	Off	
BusyAction	queue	*
ButtonDownFcn	4	Ø
CData		Ø
Callback	💰 %automatic	Ø
CreateFcn	4	Ø
DeleteFcn	4	Ø
Enable	on	*
🗄 Extent	[0 0 12,4 1,462]	
FontAngle	normal	-
FontName	MS Sans Serif	Ø
FontSize	8.0	Ø
FontUnits	points	-
FontWeight	normal	-
ForegroundColor		
HandleVisibility	on	*
HorizontalAlignment	center	-
Interruptible	🗹 On	
KeyPressFcn	4	Ø
KeyReleaseFcn	4	Ø
ListboxTop	1.0	Ø
Max	1.0	Ø
Min	0.0	Ø
Position	[24,8 22,769 15,2 1,76	59]
SliderStep	[1x2 double array]	Ø
String	E Push Button	Ø
Style	pushbutton	• 🗸

Figura 16. Propiedades editables de los componentes de una GUI. Fuente: El Autor
Entre las opciones de los componentes que se observan en la figura 15, la opción *View Callbacks* es la más importante, al ejecutarla abre el archivo *.m* asociado a nuestro diseño y coloca al usuario en la parte del programa que corresponde a la subrutina que se ejecutará cuando se realice una determinada acción sobre el elemento que estamos editando, esto se observa en la figura 17.

C	unction pas	hbuttoni Caliback (hObject, eventdate, handles)
0.	hObject	handle to pushbutton1 (see OCBO)
. 6	eventdata	reserved - to be defined in a future version of HATLAS
	handles	structure with handles and user data (see OUIDATA)

Figura 17. Vista del *Callbacks* de un componente de una GUI. Fuente: El Autor.

En la figura 18, se visualiza el código de programación de una manera esquemática, el cual contiene las funciones en las que se basa la aplicación para funcionar.

(Guerrero Barragán, 2010)

Figura 18. Estructura del código que controla las funciones del GUI. Fuente: (CAMACHO ORTEGA, 2017).

5.4. CREACIÓN DE UNA GUI PARA EL CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN MONOFÁSICOS.

Utilizando la herramienta GUI (interfaz gráfica de usuario) de MATLAB se programa el algoritmo de la figura 18, que permite calcular las pérdidas adicionales causadas por los armónicos de corriente en los transformadores de distribución monofásicos.

Para la programación del algoritmo se siguió los siguientes pasos:

1. En el archivo *calculo.fig* se ubican los componentes necesarios, los que se muestran en la figura 19.

Index UNIVERSIDAD NACIONAL DE LOJA IEI Push Batton - CÂLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN IStáci - DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN I Fosto Batton - I Stáci - I Intose - I Int					- Treatment				
Image: Description CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN Image: Description Image: Description	R Select		UNIVERSID	AD NACIONAL	DEL	OJA			
Balde Check Res Check Res DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN Transformador TOVA 4 Tova 4	In Push Batton	- CÁLCULO DE	PÉRDIDAS AD	ICIONALES CAU	SADA	SPOR	A CIRC	ULACIÓN	0.013
Rodio Button Check Rise Faith Text Static Text Transformador Totole Transformador Totole Petance normal, 5, (NVA) Static Text Petance normal, 5, (NVA) Static Text Moddas de carge normales, RLL, (W) Static Text Residencie drimpe socurdarie, R2, (D) Static Text Carger Espectra Ambines Corrente normali por escundarie, R2, (A) Static Text Carger Espectra Ambines Factor K Static Text Distation Group Active X Control Factor K Static Text Static Text Petance normali, S, (NVA) Static Text Carger Espectra Ambines Carger Espectra Ambines Factor K Static Text Static Text Static Text Static Text Carger Espectra Ambines Factor K Static Text Static T	ama Säider	 DE ARMÓNICAS 	DE CORRIENT	E EN LOS TRAN	SFOR	MADOR	ES DE	DISTRIBUCIÓ	N
Image: Check Rise Image: Check Rise Image: Check Rise Image: Check Rise Image: Check Rise Image: Check Rise Image: Static Text Image: Check Rise Image: Static Text Image: Check Rise Image: Check Rise Pariametros del transformador Image: Check Rise Par	Radio Button					0015.025	0000		19 II I
My Edit Text Transformadior 1000/A M Image: A Image: A <t< th=""><th>🖬 Check Box</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	🖬 Check Box								
Image: Strike Test 000000000000000000000000000000000000	🐺 Edit Text	Transformador	100			Ime:A	imas B	Inscrumento PLL S co	n ermónic:
EES Pop-up Menu Parametros del transformador 0 m El infors Parametros del transformador 0 m Togge Buttos Poteca normal, 5, (NVA) Static Test 0 m Totle Pordelas de vacie normales, PRL, (W) Static Test 0 m Marcel Pordelas de vacie normales, PRL, (W) Static Test 0 m Parale Pordelas de vacie normales, PRL, (W) Static Test 0 m Station Group Pesatence (Innes sociadaria, R2, (D) Static Test 0 m ActiveX Control Resatence (Innes sociadaria, R2, (D) Static Test 0 m Cornente normaligor sociadaria, R2, (D) Static Test 0 m Cornente normaligor sociadaria, R2, (D) Static Test 0 m Cornente normaligor sociadaria, R2, (D) Static Test 0 m Cornente normaligor sociadaria, R2, (D) Static Test 0 m Cornente normaligor sociadaria, R2, (D) Static Test 0 m Factor K Static Test 0 m	M Static Text	Lange -	12		000				*
El Lations Polencia normal 5. (NOA) Static Test Im Toggie Button Polencia normale 5. (NOA) Static Test Im Togle Button Polencia normales, PIL, (W) Static Test Im Polencia Polencia normales, PIL, (W) Static Test Im Togle Button Group Polencia normales, PIL, (W) Static Test Im Polencia Polencia normales, PIL, (W) Static Test Im Polencia Polencia privatio, PI, (U) Static Test Im ActiveX Control Polencia privatio, PI, (A) Static Test Im Control is normal por acturdatio, PI, (A) Static Test Calcular Im Control is normal por acturdatio, PI, (A) Static Test Improve Reports Im Polencia Polencia Polencia Polencia	EB Pop-up Menu	Parametros del transformador			03h				
Image: Button Pointing normality (NVA) Date: 1000 Image: Table Pointing normality (NVA) Date: 1000 Image: Table Pointing normality (NVA) Static Text Image: Table Pointing normality (NVA) <td>E Lintbos</td> <td>and so dealer 1</td> <td>Charles Taure</td> <td></td> <td>03h</td> <td></td> <td></td> <td></td> <td></td>	E Lintbos	and so dealer 1	Charles Taure		03h				
Image: Table Pierdosa de sacie normatian, Plu, (N) Stato Text Id: Asce: Nordosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Pierdosa de cargo normatian, Plu, (N) Stato Text Image: Table Cargo: Table: Text Cargo: Table: Text Image: Table: Table: Text Stato: Text Image: Text Image: Text Stato: Text Image: Text	III Toggle Button	Potencia nomenal, S. (KVA)	CREASE HEAR		04h				
In/ Avee Moddaa de carga normaties, PLL (V/) Static Text Till Panet Resaltancia diverce priveria, R1, (D) Static Text X ActiveX Control Resaltancia diverce priveria, R2, (D) Static Text Corper Espectra Avendese axos1 Corper Espectra Avendese axos1 Corper Espectra Avendese axos1 Paneter Carger Espectra Avendese Corperte scenario por escundaria, R2, (D) Static Text Paneter K Static Text	Table .	Pérdidas de vacé noverales, PNL, (W)	Stato Text		4/11				
Nordel Meddas de cargo spenates, RLL (W) Static Text Il Button Group Resistence (Innica primeria, R1, (1)) Static Text Il ActiveX Control Resistence (Innica primeria, R2, (1)) Static Text Resistence (Innica primeria, R2, (1)) Static Text Cargor Static Remote Amotione Contente seemal por primerio, II, (A) Static Text Cargor Static Remote Contente seemal por primerio, II, (A) Static Text Ingrate Regorde Factor K Static Text Ingrate Regorde	Axes								
Button Group Resistence (Innex primeria, R1, (1)) Static Test Cargar Espectra Amotocia axis1 IX ActiveX Control Resistence (Innex sociadaria, R2, (1)) Static Test Cargar Espectra Amotocia axis1 Contents sociadaria, R2, (1)) Static Test Cargar Espectra Amotocia axis1 Contents sociadaria, R2, (1)) Static Test Catuatr axis1 Contents sociadaria, R2, (1) Static Test unprese Reports axis1 Pactor K Static Test unprese Reports axis1	E Panel	Pérdidas de carga normales, PLL, (W)	Static Text						
ActiveX Centrol Resaltence (mmps socunderia, 82, (0)) Static Text Cargar Espectra Amotocol axio1 Contente secenal por privario, II, (A) Static Text Calcular axio1 Contente reament por secunderio, IZ, (A) Static Text ingrate Regorite axio1 Factor N Static Text ingrate Regorite ingrate Regorite	T Button Group	Resistancia divisica primetta R1. (0)	Shall: Test				-	3	
Contente scenari por primerio, IT, (A) Stalio Text Calcular Contente rummili por secundario, IZ, (A) Stalio Text Ingente Reports Pactor K. Stalio Text	X Activel Control	Resalença (Innos socundaria, R2, (D)	Slake Text.	Cargar Expectro Arms	Cargar Espectro Armónico Calcular		1	axeel	
Comierio nameni por ascandario, D. (A) Static Text Impres Reporte Factor K. Static Text		Contente sceneral por primario, II., (A)	Static Text	Celcular			1	\sim	
Pacier K. Static Text		Corriente numeral por ascundanto, D, (A)	Static Text	Ingrite Reports			/		
		Factor K	Static Text			Y			

Figura 19. Ventana principal de la aplicación GUI. Fuente: El Autor.

2. En el componente Pop-up Menu se puede elegir la capacidad del transformador y también se cargan los parámetros de placa del transformador, para esto se abre el archivo *calculo.m* dando clic derecho y se selecciona *View Callback* y ahí se escribe las líneas de programación que se indican en la figura 20.

```
contents = cellstr(get(hObject, 'String'));
contents{get(hObject, 'Value')}
ini = get(handles.popupmenu1, 'Value');
if ini == 1
      set(handles.text10, 'String', '1.254705')
      set(handles.text11,'String','41.666666')
      set(handles.text12, 'String', '37.07')
      set(handles.text13, 'String', '0.04345')
      set(handles.text14, 'String', '1')
      set(handles.text15,'String','142')
      set(handles.text16, 'String', '52')
      set(handles.text84, 'String', '10')
end
if ini == 2
      set(handles.text10, 'String', '1.882057')
      set(handles.text11, 'String', '62.5')
      set(handles.text12, 'String', '23.5')
      set(handles.text13, 'String', '0.025290')
      set(handles.text14, 'String', '1')
      set(handles.text15,'String','192')
      set(handles.text16, 'String', '68')
      set(handles.text84, 'String', '15')
end
if ini == 3
      set(handles.text10, 'String', '3.280840')
      set(handles.text11, 'String', '104.166667')
      set(handles.text12, 'String', '11')
      set(handles.text13,'String','0.012')
      set(handles.text14, 'String', '1')
      set(handles.text15,'String','360')
      set(handles.text16, 'String', '90')
      set(handles.text84, 'String', '25')
end
if ini==4
    set(handles.text10, 'String', '4.705144')
    set(handles.text11,'String','156.25')
    set(handles.text12,'String','7.38')
    set(handles.text13, 'String', '0.00774')
    set(handles.text14, 'String', '1')
    set(handles.text15,'String','403')
    set(handles.text16, 'String', '130')
    set(handles.text84, 'String', '37.5')
end
```

Figura 20. Líneas de programación del componente Pop-up Menu. Fuente: El Autor.

Con estas líneas de programación se puede seleccionar la capacidad del transformador y también se cargan los parámetros de placa del transformador, estas características se cargan en los *Static Text* que se muestran en la figura 21.

Figura 21. Parámetros de placa del transformador. Fuente: El Autor.

3. El siguiente paso es programar el componente "Cargar Espectro Armónico", en donde se va a cargar la base de datos, es decir, el espectro armónico de las 24 horas del día. Se elaboró una plantilla en una hoja de Excel para guardar los valores el espectro armónico y posteriormente cargarlo al programa, esta plantilla se muestra en el anexo A.

En el Callback se escribe el comando "cargarej" que abre el archivo *cargarej.fig*. En este entorno se ubica los componentes que se muestran en la figura 22.

Figura 22. Ventana secundaria de la GUI. Fuente: El Autor.

El botón "CARGAR" de la figura 22 sirve para cargar el espectro armónico y en su Callback se escribe las siguientes líneas de programación que se indican en la figura 23.

```
global A
[nombre direc] = uigetfile('*.xlsx','Abrir');
if nombre==0
    return
end
A=xlsread(fullfile(direc,nombre));
set(handles.faseA,'Visible','on');
set(handles.faseA,'Data',A)
```

Figura 23. Líneas de programación para el botón cargar.

De esta forma se carga la base de datos en la siguiente tabla de la figura 24.

Esp	Espectro Armónico de las 24 horas del día de la fase A y B							
	hA	lhA	hB	lhB				
00h					^			
					- 11			
01h								
_								
02h								
					~			

Figura 24. Espectro armónico de las 24 horas del día de la fase A y B. Fuente: El Autor.

El componente "Reset" se utiliza para reiniciar la base de datos y se escribe la siguiente línea de programación que se indica en la figura 25.

```
set(handles.faseA, 'Data', '')
```

Figura 25. Línea de programación para el botón Reset. Fuente: El Autor.

En el componente "Cálculo de los factores de pérdidas armónicas" de la figura 22 se calculan los factores de pérdidas armónicas y se escribe las siguientes líneas de programación que se indican en la figura 26.

Figura 26. Líneas de programación del botón Cálculo de los factores de pérdidas armónicas. Fuente: El Autor.

Las líneas de programación que se indican en la figura 26 calcula los factores de pérdidas armónicas para la fase A en las 00 horas, para la fase B y para el resto de las horas se realiza el mismo procedimiento. Estos factores de pérdidas armónicas se cargan en la tabla de la figura 27.

	Factores de pérdidas Armónicas para la fase A y B									
	FHL	A FH	LA-STR	lsecA(pu)	FF	HLB	FHLB	-STR	lsecB(pu)	
00h										^
01h										
02h										
001	<								>	Ť

Figura 27. Factores de pérdidas Armónicas para la fase A y B. Fuente: El Autor.

En el componente "REGRESAR" de la figura 22 permite volver a la pantalla principal del GUI, se utilizan las líneas de programación que se indican en la figura 28.

```
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see
GUIDATA)
calculo
```

Figura 28. Líneas de programación del botón Regresar. Fuente: El Autor.

Y en el último componente "SALIR" de la figura 22 permite cerrar la ventana *cargarej.fig* y en su Callback se escribe las líneas de programación que se indican en la figura 29.

```
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see
GUIDATA)
close cargarej
```

Figura 29. Líneas de programación del botón Salir. Fuente: El Autor.

4. En la ventana principal, en el componente "Calcular" de la figura 19 se calculan las intensidades máximas de la fase A y B, el incremento de pérdidas y la potencia reducida del transformador ante corrientes no sinusoidales, esto se calcula con las siguientes líneas de programación que se indican en la figura 30.

```
function pushbutton1 Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of
MATLAB
% handles structure with handles and user data (see
GUIDATA)
global PECR;
global POSLR;
global PDC;
global FHLAh00;
global FHLASTRh00;
global IsecApuh00;
global PECAh00;
global POSLAh00;
global I2;
PECRApuh00=PECR/PECAh00;
POSLRApuh00=POSLR/POSLAh00;
PLLRApuh00=1+PECRApuh00+POSLRApuh00;
ImaxApuh00=(PLLRApuh00/(1+FHLAh00*PECRApuh00+FHLASTRh00*POSLR
Apuh00))^(1/2);
ImaxAh00=ImaxApuh00*I2;
PLLHApuh00=(IsecApuh00)^2*(1+((FHLAh00*PECR)/PDC)+((FHLASTRh0
0*POSLR)/PDC));
```

```
PLLApuh00=(IsecApuh00)^2*(1+PECR/PDC+POSLR/PDC);
global FHLBh00;
global FHLBSTRh00;
global IsecBpuh00;
global PECBh00;
global POSLBh00;
global PNL;
PECRBpuh00=PECR/PECBh00;
POSLRBpuh00=POSLR/POSLBh00;
PLLRBpuh00=1+PECRBpuh00+POSLRBpuh00;
ImaxBpuh00=(PLLRBpuh00/(1+FHLBh00*PECRBpuh00+FHLBSTRh00*POSLR
Bpuh00))^(1/2);
ImaxBh00=ImaxBpuh00*I2;
PLLHBpuh00=(IsecBpuh00)^2*(1+((FHLBh00*PECR)/PDC)+((FHLBSTRh0
0*POSLR)/PDC));
PLLTHh00=(PLLHApuh00+PLLHBpuh00) * (PDC/2);
PHh00=PNL+PLLTHh00;
PLLBpuh00=(IsecBpuh00)^2*(1+PECR/PDC+POSLR/PDC);
PLLTh00=(PLLApuh00+PLLBpuh00) * (PDC/2);
Ph00=PNL+PLLTh00;
TPLLh00=PHh00-Ph00;
. . . . . . . . .
global data1
data1(:,1)=[ImaxAh00 ImaxAh01 ImaxAh02 ImaxAh03 ImaxAh04
ImaxAh05 ImaxAh06 ImaxAh07 ImaxAh08 ImaxAh09 ImaxAh10
ImaxAh11 ImaxAh12 ImaxAh13 ImaxAh14 ImaxAh15 ImaxAh16
ImaxAh17 ImaxAh18 ImaxAh19 ImaxAh20 ImaxAh21 ImaxAh22
ImaxAh23];
data1(:,2)=[ImaxBh00 ImaxBh01 ImaxBh02 ImaxBh03 ImaxBh04
ImaxBh05 ImaxBh06 ImaxBh07 ImaxBh08 ImaxBh09 ImaxBh10
ImaxBh11 ImaxBh12 ImaxBh13 ImaxBh14 ImaxBh15 ImaxBh16
ImaxBh17 ImaxBh18 ImaxBh19 ImaxBh20 ImaxBh21 ImaxBh22
ImaxBh231;
data1(:,3)=[TPLLh00 TPLLh01 TPLLh02 TPLLh03 TPLLh04 TPLLh05
TPLLh06 TPLLh07 TPLLh08 TPLLh09 TPLLh10 TPLLh11 TPLLh12
TPLLh13 TPLLh14 TPLLh15 TPLLh16 TPLLh17 TPLLh18 TPLLh19
TPLLh20 TPLLh21 TPLLh22 TPLLh23];
data1(:,4)=[sh00 sh01 sh02 sh03 sh04 sh05 sh06 sh07 sh08 sh09
sh10 sh11 sh12 sh13 sh14 sh15 sh16 sh17 sh18 sh19 sh20 sh21
sh22 sh23];
set(handles.uitable2, 'Data', data1)
.....
x=[00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18
19 20 21 22 23];
y=[TPLLh00 TPLLh01 TPLLh02 TPLLh03 TPLLh04 TPLLh05 TPLLh06
TPLLh07 TPLLh08 TPLLh09 TPLLh10 TPLLh11 TPLLh12 TPLLh13
TPLLh14 TPLLh15 TPLLh16 TPLLh17 TPLLh18 TPLLh19 TPLLh20
TPLLh21 TPLLh22 TPLLh23];
plot(x,y,'r');
xlabel('x')
ylabel('y')
```

Figura 30. Líneas de programación del botón Calcular. Fuente: El Autor.

Los datos calculados se envían a la tabla que se indica en la figura 31 y se representan en la gráfica 1 de la figura 19.

_	Resultados en presencia de corrientes no sinusoidales							
			ImaxA	ImaxB	Imcremento PLL	S con armónic		
	00h						^	
-	01h							
	02h							
	03h							
	04h							
	05h						~	
_		<				>		

Figura 31. Resultados en presencia de corrientes no sinusoidales. Fuente: El Autor.

- 5. En el componente "Imprimir Reporte" de la figura 22 se guardan los datos calculados en un documento de Microsoft Excel. En el reporte se detallan los resultados y también se muestran las gráficas correspondientes. Este reporte se muestra en el anexo B.
- 6. Y por último el componente "Salir" de la figura 22 nos permite abandonar la aplicación.

Esta GUI carga la base de datos, el espectro armónico de la fase A y B de las 24 horas de día, y calcula los factores de pérdidas armónicas y finalmente determina la capacidad del transformador ante corrientes no sinusoidales.

Los resultados obtenidos se exportan y se guardan en un documento de Microsoft Excel, de esta forma los resultados pueden ser analizados por el usuario.

6. RESULTADOS.

Para evaluar la capacidad de carga de un transformador aplicando la metodología analítica y la aplicación GUI desarrollada es necesario conocer el espectro armónico de la carga del equipo, para la obtención del espectro armónico se realizó una medición de calidad de la energía a los transformadores monofásicos pertenecientes a las E.E.R.S.S.A.: 10 kVA con N°6041, 15 kVA con N°11362, 25 kVA con N°10942 y 37.5 kVA con N°10607.

Para validar la aplicación GUI desarrollada se evalúan los transformadores descritos con el mismo espectro armónico para un mismo tiempo (00:00h) haciendo uso de la metodología analítica propuesta por la norma ANSI/IEEE C57.110 y la aplicación GUI desarrollada.

6.1. EVALUACIÓN DE LOS TRANSFORMADORES APLICANDO LA NORMA ANSI/IEE C57.110.

Para evaluar la capacidad de carga de un transformador aplicando la norma ANSI/IEEE C57.110 es necesario tener los parámetros reportados en el protocolo de pruebas del transformador y conocer el espectro armónico característico. (Betancourt Aguilar, 2016).

Estos parámetros son los que se presentan en la tabla 24:

Potencia (kVA)	Тіро	Tensión en primario (kV)	Tensión en secundario (kV)	I prim (A)	I sec (A)
10	Monofásico	7,970	0,24	1.25	41,67
Pérdidas con carga(W)	Pérdidas en vacío (W)	Relación Transformación	$\mathbf{R}_{1}\left(\Omega ight)$	$\mathbf{R}_{2}\left(\Omega ight)$	
142	52	33,208	37,07	0,04345	

Tabla 24. Parámetros del transformador de 10 kVA.

Con los valores de los parámetros del protocolo de pruebas y de acuerdo con el trabajo de titulación de (Betancourt Aguilar, 2016) se procede a calcular el comportamiento del trasformador ante la presencia de un espectro armónico, aplicando la siguiente secuencia de cálculos:

1.- Pérdidas parásitas totales.

Las pérdidas óhmicas totales en condiciones normales son:

$$P_{DC} = I_{1}^{2}R_{1} + I_{2}^{2}R_{2}$$

$$P_{DC} = 133,7928 W$$

Por lo tanto, las pérdidas parásitas totales son:

$$P_{TSL-R} = P_{LL-R} - K * [I_1^2 R_1 + I_2^2 R_2]$$
$$P_{TSL-R} = 8,2072 W$$

Luego se calcula las pérdidas por corrientes de Eddy bajo condiciones nominales, según la norma ANSI/IEEE C57.110, las pérdidas en los devanados constituyen aproximadamente un 33% de las pérdidas adicionales totales para transformadores en aceite, por lo que las pérdidas en los devanados son (IEEE std C57.110, 2008):

$$P_{EC-R} = P_{TSL-R} * 0.33$$

 $P_{EC-R} = 2,7084W$

Las otras pérdidas adicionales son:

$$P_{OSL-R} = P_{TSL-R} - P_{EC-R}$$
$$P_{OSL-R} = 5,4988 W$$

Las pérdidas parásitas totales, las pérdidas por corriente de Eddy y las otras pérdidas adicionales se pueden ver en la tabla 25.

Tabla 25. Pérdidas parásitas totales, pérdidas por corrientes de Eddy y otras pérdidas adicionales.

P _{TSL-R}	Pec-r	Posl-r
(W)	(W)	(W)
8,2072	2,7084	5,4988

Fuente:	El	Autor.
---------	----	--------

La norma ANSI/IEE C57.110 recomienda que la división de las pérdidas por corrientes parásitas entre los devanados se asume de la siguiente manera (IEEE std C57.110, 2008):

1. 60% para el devanado interior y 40% para el devanado exterior de los transformadores que tengan una corriente nominal inferior a 1000 A o que la relación de transformación sea de 4:1 o inferior.

2. 70% para el devanado interior y 30% para el devanado exterior de los transformadores que tengan una relación de transformación mayor a 4:1 y uno o más devanados con corriente nominal mayor a 1000A.

En ausencia de otra información, se considera que el devanado interior es el devanado de baja tensión. Para este caso, se tiene que las pérdidas nominales por corrientes parásitas en el devanado primario son (Betancourt Aguilar, 2016):

$$P_{ECI-R} = 0.4 * P_{ECR}$$

$$P_{ECI-R} = 1,0834 W$$

Para el devanado secundario:

$$P_{ECI-R} = 0.6 * P_{ECR}$$

$$P_{ECI-R} = 1,6250W$$

Las pérdidas nominales por corrientes parásitas en el devanado primario y secundario se muestran en la tabla 26.

Tabla 26. Pérdidas nominales por corrientes parásitas en el devanado primario y secundario.

Primario	Secundario				
1.0834 W	1.6250 W				
Fuente: El Autor.					

2.- Factores de pérdidas armónicas.

Calcular el factor armónico para pérdidas por corrientes de Eddy y el factor de armónico para otras pérdidas parásitas a partir del espectro armónico que se muestra en la tabla 27.

	SECUNDARIO 1								
h	I _h	$\frac{I_h}{I_R}$	$\left(\frac{I_h}{I_R}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_R}\right)^2 h^2$	$\left(\frac{I_h}{I_R}\right)^2 h^{0.8}$		
1	27,150	0,652	0,42458	1	1,00	0,425	0,425		
3	1,977	0,047	0,00225	9	2,41	0,020	0,005		
5	1,868	0,045	0,00201	25	3,62	0,050	0,007		

49

81

121

286,000

Fuente: El Autor.

4,74

5,80

6,81

24,384

0,016

0,036

0,001

0,549

0,002

0,003

0,000

0,442

Tabla 27. Espectro armónico para el cálculo de los factores de pérdidas armónicas para la fase A.

El factor armónico para las pérdidas por corrientes de Eddy es:

0,00033

0,00045

0,00001

0,430

0,018

0,021

0,003

0,786

$$F_{HL} = \frac{\sum_{h=1}^{h=h_{max}} h^2 [I_h/I_R]^2}{\sum_{h=1}^{h=h_{max}} [I_h/I_R]^2}$$

0,758

0,880

0,130

32,763

7

9

11

Σ

$F_{HL}=1,\!2770$

El factor armónico para otras pérdidas parásitas es:

$$F_{HL-STR} = \frac{\sum_{h=1}^{h=h_{max}} h^{0.8} \left[\frac{I_h}{I_R}\right]^2}{\sum_{h=1}^{h=h_{max}} \left[\frac{I_h}{I_R}\right]^2}$$

 $F_{HL-STR} = 1,0277$

La corriente del secundario en p.u. para la fase A es:

$$I_{sec}(pu)^2 = \sqrt{\sum_{h=1}^{h=h_{max}} \left(\frac{I_{h1}}{I_R}\right)^2}$$

$$I_{sec}(pu)^2 = 0,6555$$

Los factores armónicos para la fase A se muestran en la tabla 28.

Tabla 28. Factores de pérdidas armónicas para la fase A del transformador de 10 kVA.

I (p.u.) ²	F _{HL}	Fhl-str				
0,6555	1,2770	1,0277				
Fuente: El Autor.						

La corriente óptima del equipo se refiere a la máxima carga que se puede instalar para evitar reducir el tiempo de vida (Betancourt Aguilar, 2016).

3.- Pérdidas en condiciones armónicas. (IEEE std C57.110, 2008)

Las pérdidas por corrientes de Eddy en condiciones armónicas son:

$$P_{EC} = P_{EC-R} * \sum_{h=1}^{h=h_{max}} h^2 \left[\frac{I_h}{I_R}\right]^2$$
$$P_{EC} = 1,4859 \text{ W}$$

Las otras pérdidas parásitas en condiciones armónicas son:

$$P_{OSL} = P_{OSL-R} * \sum_{h=1}^{h=h_{max}} h^{0.8} \left[\frac{I_h}{I_R} \right]^2$$
$$P_{OSL} = 2,43 \text{ W}$$

Estas pérdidas se representan en por unidad:

$$P_{EC-R}(pu) = \frac{P_{EC-R}}{P_{EC}}$$
$$P_{EC-R}(pu) = 1,82$$
$$P_{OSL-R}(pu) = \frac{P_{OSL-R}}{P_{OSL}}$$
$$P_{OSL-R}(pu) = 2,26$$

De acuerdo con (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014) cuando un transformador es utilizado en una red con armónicos de corriente, debido al incremento de las pérdidas, también aumenta la temperatura, y, por tal razón, su potencia nominal debe ser desclasificada. Por lo tanto, la máxima corriente de carga del transformador por el que circulan armónicos tiene que ser determinada por aquella que provocaría iguales pérdidas en condiciones sinusoidales.

4.- Pérdidas con carga por unidad sin armónicos y con armónicos.

Las pérdidas con carga por unidad (p.u.) sin armónicos y en condiciones nominales son iguales a (Betancourt Aguilar, 2016):

$$P_{LL-R}(p.u.) = 1 + P_{EC-R}(p.u.) + P_{OSL-R}(p.u.)$$

$$P_{LL-R}(p.u.) = 5,08$$

En condiciones no sinusoidales se tiene:

$$P_{LL}(p.u.) = I^{2}(p.u) * [1 + F_{HL} * P_{EC-R}(p.u.) + F_{HL-STR} * P_{OSL-R}(p.u.)]$$

Por lo tanto, la corriente máxima permisible para determinar la reducción de la capacidad del transformador se deduce de la expresión anterior y queda de la siguiente forma (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014):

$$I_{max}(p.u) = \sqrt{\frac{P_{LL-R}(p.u)}{1 + [F_{HL} * P_{EC-R}(p.u)] + [F_{HL-STR} * P_{OSL-R}(p.u)]}}$$

 $I_{max}(p.u) = 0,9485$

La corriente máxima que soportará el equipo ante la presencia del espectro armónico seleccionado será (Betancourt Aguilar, 2016):

$$I_{max} = I_2 * I_{max}(p.u)$$

$$I_{max} = 39,5210 \text{ A}$$

En la tabla 29 se muestra el resumen de los cálculos realizados para la fase A para determinar el incremento de pérdidas por la presencia de corrientes armónicas en el transformador de distribución monofásico de 10 kVA. (Betancourt Aguilar, 2016)

Tabla 29. Cálculos de pérdidas adicionales por armónicos de corriente en el transformador de 10 kVA para la fase A.

Tipo de carga	Pérdida nominal (W)	Pérdida con carga bajo corriente armónica (w)	Factor de pérdida armónica	Corrección de pérdidas con carga bajo corrección armónica (w)
Sin carga	52	52		52
DC (I ² R)	133,79	57,48		57,48
Corriente de Eddy en devanados	2,71	1,164	1,277	1,486
Otras pérdidas	5,50	2,3625	1,0277	2,428

Fuente: El Autor.

En la tabla 30 se presentan los resultados de las pérdidas que generan los armónicos en el trasformador para la fase A.

Tabla 30. Resultados finales de las pérdidas por armónicos de corriente para la fase A del transformador

de 10 KVA.								
PEC	PEC POS PEC-R PO			Pll-r	Imax	Imax		
(W)	(W)	(p.u.)	(p.u.)	(p.u.)	(p.u.)	(A)		
1,486 2,43 1,82 2,26 5.08 0,949 39,52								
Fuente: El Autor.								

El mismo procedimiento se aplica para la fase B. En base al espectro armónico de la fase B que se muestra en la tabla 31 se calculan los factores armónicos, estos factores se muestran en la tabla 32.

	SECUNDARIO 2								
h	I _h	$\frac{I_h}{I_R}$	$\left(\frac{I_h}{I_R}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_R}\right)^2 h^2$	$\left(\frac{I_h}{I_R}\right)^2 h^{0.8}$		
1	25,350	0,608	0,37015	1	1,00	0,370	0,370		
3	2,225	0,053	0,00285	9	2,41	0,026	0,007		
5	2,058	0,049	0,00244	25	3,62	0,061	0,009		
7	0,862	0,021	0,00043	49	4,74	0,021	0,002		
9	0,757	0,018	0,00033	81	5,80	0,027	0,002		
11	0,130	0,003	0,00001	121	6,81	0,001	0,000		
Σ	31,382	0,753	0,376	286,000	24,384	0,506	0,390		
			Fuente:	El Autor.					

 Tabla 31. Espectro armónico para el cálculo de los factores de pérdidas armónicas para la fase B del transformador de 10 kVA.

ruente. El Autor.

Tabla 32. Factores armónicos para la fase B.

I (p.u.) ²	F _{HL}	Fhl-str			
0,6134	1,3441	1,0363			

Fuente: El Autor.

En la tabla 33 se muestra las pérdidas adicionales causadas por la presencia armónicas de corriente en el transformador de distribución monofásico de 10 kVA.

Tabla 33. Cálculos de pérdidas adicionales por armónicos en el transformador de 10 kVA para la fase B.

TIPO DE CARGA	PÉRDIDA NOMINAL (W)	PÉRDIDA CON CARGA BAJO CORRIENTE ARMÓNICA (W)	FACTOR DE PÉRDIDA ARMÓNICA	CORRECCIÓN DE PÉRDIDAS CON CARGA BAJO CORRECCIÓN ARMÓNICA (W)
SIN CARGA	52	52		52
$DC(I^2R)$	133,79	50,33		50,33
CORRIENTE DE EDDY EN DEVANADOS	2,71	1,02	1,3441	1,3696
OTRAS PÉRDIDAS	5,50	2,0687	1,0363	2,14

Fuente: El Autor.

En la tabla 34 se muestran el resumen de los cálculos realizados para la fase B.

Tabla 34. Resultados finales de las pérdidas por armónicos de corriente para la fase B en el
transformador de 10 kVA.

P _{EC}	Posl	P _{EC-R}	P _{OSL-R}	P _{LL-R}	I _{max}	I _{max}
(W)	(W)	(p.u.)	(p.u.)	(p.u.)	(p.u.)	(A)
1,369	2,14	1,98	2,56	5.54	0,9368	39,031
		Б	1 11 4			

Fuente: El Autor.

De acuerdo con la tabla 30 y 34, con una intensidad máxima para la fase A de 39,521 A y para la fase B de 39,031 A, la capacidad reducida del transformador de 10 kVA por la presencia de armónicos es de 9,426 kVA, despreciando la sobrecarga admisible.

Conforme al trabajo investigativo de (Betancourt Aguilar, 2016) y al informe técnico (Gómez-Sarduy, Quispe, Reyes-Calvo, Sousa-Santos, & Viego-Felipe, 2014) aplicando la siguiente ecuación se calculan las pérdidas con carga en p.u. para cada corriente de carga. Como cada sección del devanado secundario contribuye de manera independiente, se utiliza como base la mitad de las pérdidas óhmicas nominales. Por otro lado, si cada corriente de las secciones secundarias contribuye de igual manera a las otras pérdidas adicionales, se tiene que las pérdidas de carga en p.u. provocadas por cada corriente de carga no sinusoidal serán:

$$P_{LLHA}(p.u.) = I_A(p.u.)^2 \left[1 + \frac{F_{HLA}\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{F_{HLA-STR}\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$$

 $P_{LLHA}(p.u.) = 0.459$

$$P_{LLHB}(p.u.) = I_B(p.u)^2 \left[1 + \frac{F_{HLB}\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{F_{HLB-STR}\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$$

$$P_{LLHB}(p.u.) = 0.402$$

5.- Las pérdidas con carga totales en condiciones no sinusoidales son (IEEE std C57.110, 2008):

$$P_{LLTH} = P_{LLHA}(p.u) + P_{LLHB}(p.u) * \frac{P_{dc}}{2}$$
$$P_{LLTH} = 57,62 W$$

Las pérdidas totales con armónicos son:

$$P_H = P_{NL} + P_{LLTH}$$
$$P_H = 109,62 W$$

6.- Para condiciones sinusoidales suponiendo igual valor RMS de las corrientes de carga se tiene (IEEE std C57.110, 2008):

$$P_{LLA}(p.u.) = I_A(p.u.)^2 \left[1 + \frac{\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$$

 $P_{LLA}(p.u.) = 0.456$

$$P_{LLB}(p.u.) = I_B(p.u.)^2 \left[1 + \frac{\left(\frac{P_{EC-R}}{2}\right)}{\frac{P_{dc}}{2}} + \frac{\left(\frac{P_{OSL-R}}{2}\right)}{\frac{P_{dc}}{2}} \right]$$

 $P_{LLB}(p.u.) = 0,399$

$$P_{LLT} = (P_{LLA}(p.u) + P_{LLB}(p.u))\frac{P_{dc}}{2}$$

$$P_{LLT} = 57,21 W$$

7.- Las pérdidas totales sin armónicos serian:

$$P = P_{NL} + P_{LLT}$$
$$P = 109,21 W$$

8.- El incremento de las pérdidas por la circulación de armónicos en este caso será igual a:

 $\Delta_{PLL} = P_H - P$ $\Delta_{PLL} = 0,41 W$

En la tabla 35 se presenta un resumen de los resultados obtenidos para el transformador de 10 kVA:

|--|

PÉRDIDAS CO CONDICION	N CARGAS TOT IES NO SINUSOI	ALES EN DALES	PÉRDIDAS TOTALES CON ARMÓNICOS	INCREMENTA DE	
$P_{LLHA}(p.u)$ $P_{LLHB}(p.u)$		P _{LLTH} (W)	P_H (W)	INCREMENTO DE PÉRDIDAS POR CIRCULACIÓN DE	
0.459	0.402	57.62	109.621	ARMÓNICOS	
PÉRDIDAS CO CONDICIO	N CARGAS TOT	ALES EN ALES	PÉRDIDAS TOTALES SIN ARMÓNICOS		
$P_{LLA}(p.u)$	$P_{LLB}(p.u)$	P _{LLT} (W)	<i>P</i> (W)	Δ_{PLL} (W)	
0.456	0.399	57.21	109.215	0.406	

Fuente: El Autor.

Para el resto de los transformadores se efectúa la misma secuencia de cálculo obteniendo los siguientes resultados:

Para el transformador monofásico de 15 kVA:

Los parámetros del transformador de 15 kVA se presentan en la tabla 36.

Potencia (kVA)	Тіро	Tensión en primario (kV)	Tensión en secundario (kV)	I prim (A)	I sec (A)
15	Monofásico	7,970	0,24	1,88	62,50
Pérdidas con carga (W)	Pérdidas en vacío (W)	Relación Transformación	R1 (Ω)	R2 (Ω)	
192	68	33,2083	23,5	0,0253	
<u>.</u>	•	Fuente: El Autor.	•	•	4

Tabla 36. Parámetros del transformador de 15 kVA.

En la tabla 37 se presentan las pérdidas parásitas totales, las pérdidas por corriente de Eddy, las otras pérdidas adicionales y las pérdidas óhmicas en condiciones normales.

 Tabla 37. Pérdidas parásitas totales, pérdidas por corriente de Eddy, otras pérdidas adicionales y pérdidas óhmicas totales en condiciones normales.

P _{TSL-R} (W)	P _{EC-R} (W)	P _{OSL-R} (W)	P _{DC} (W)			
9,9706	3,2903	6,68	182,0293			
Fuente: El Autor.						

En la tabla 38 se puede observar las pérdidas nominales por corrientes parásitas tanto en el devanado primario como secundario.

Tabla 38. Pérdidas nominales por corrientes parásitas en el devanado primario y secundario.

Primario	Secundario				
1,3161 W	1,9741 W				
Fuente: El Autor.					

El cálculo de los factores de pérdidas armónicas para la fase A y B se realiza a partir de los espectros armónicos que se presentan en la tabla 39 y tabla 40.

FASE A								
h	I _h	$\frac{I_h}{I_R}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$	
1	23,250	0,372	0,13838	1	1,00	0,138	0,138	
3	2,135	0,034	0,00117	9	2,41	0,011	0,003	
5	1,493	0,024	0,00057	25	3,62	0,014	0,002	
7	0,588	0,009	0,00009	49	4,74	0,004	0,000	
9	0,490	0,008	0,00006	81	5,80	0,005	0,000	
11	0,072	0,001	0,00000	121	6,81	0,000	0,000	
Σ	28,028	0,448	0,140	286,000	24,384	0,173	0,144	

Tabla 39. Espectro armónico de la fase A del transformador de 15 kVA.

Fuente: El Autor.

Tabla 40. Espectro armónico de la fase B del transformador de 15 kVA.

	FASE B								
h	I _h	$\frac{I_h}{I_1}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$		
1	8,783	0,141	0,01975	1	1,00	0,020	0,020		
3	0,947	0,015	0,00023	9	2,41	0,002	0,001		
5	0,682	0,011	0,00012	25	3,62	0,003	0,000		
7	0,147	0,002	0,00001	49	4,74	0,000	0,000		
9	0,240	0,004	0,00001	81	5,80	0,001	0,000		
11	0,160	0,003	0,00001	121	6,81	0,001	0,000		
Σ	10,959	0,175	0,020	286,000	24,384	0,027	0,021		
				4 T1 4 .					

Fuente: El Autor.

En la tabla 41 se presenta el resumen de los factores de pérdidas armónicas para la fase A y B del transformador de 15 kVA.

Tabla 41. Factores de pérdidas armónicas para la fase A y B en el transformador de 15 KVA.

FASE A			FASE B			
I (p.u.) ²	F _{HL}	Fhl-str	I (p.u.) ²	F _{HL}	Fhl-str	
0,3745	1,2307	1,0269	0,1418	1,3442	1,0380	
		Fuonto	El Autor			

Fuente: El Autor.

En las tablas 42 y 43 se muestran las pérdidas adicionales causadas por la presencia armónicas de corriente en el transformador de distribución monofásico de 15 kVA para la fase A y B.

	FASE A								
TIPO DE CARGA	PÉRDIDA NOMINAL (W)	PÉRDIDA CON CARGA BAJO CORRIENTE ARMÓNICA (W)	FACTOR DE PÉRDIDA ARMÓNICA	CORRECCIÓN DE PÉRDIDAS CON CARGA BAJO CORRECCIÓN ARMÓNICA (W)					
SIN CARGA	68	68		68					
$DC(I^2R)$	182,03	25,53		25,53					
CORRIENTE DE EDDY EN DEVANADOS	3,29	0,462	1,231	0,568					
OTRAS PÉRDIDAS	6,68	0,9371	1,027	0,96					

Tabla 42. Cálculos de pérdidas adicionales por la presencia de armónicos de corriente en eltransformador de 15 kVA para la fase A.

Fuente: El Autor.

Tabla 43. Cálculos de pérdidas adicionales causadas por la presencia de armónicos de corriente en el transformador de 15 kVA para la fase B.

	FASE B								
TIPO DE CARGA	PÉRDIDA CON PÉRDIDA CARGA BAJO NOMINAL CORRIENTE (W) ARMÓNICA (W)		FACTOR DE PÉRDIDA ARMÓNICA	CORRECCIÓN DE PÉRDIDAS CON CARGA BAJO CORRECCIÓN ARMÓNICA (W)					
SIN CARGA	68	68		68					
$DC(I^2R)$	182,03	3,66		3,66					
CORRIENTEDEEDDYENDEVANADOS	3,29	0,0662	1,3442	0,0889					
OTRAS PÉRDIDAS	6,68	0,1344	1,038	0,14					

En la tabla 44 se muestra el resumen de los cálculos realizados para la fase A y B.

Tabla 44. Resultados finales de las pérdidas por armónicos de corrien	nte para la fase A y B
---	------------------------

FASE A							
PEC (W)	Posl (W)	P _{EC-R} (p.u.)	Posl-R (p.u.)	P _{LL-R} (p.u.)	I _{max} (p.u.)	I _{max} (A)	
0,568	0,96	5,79	6,94	13,73	0,948	59,299	
			FASE B				
PEC (W)	Posl (W)	Р ЕС- R (р.u.)	Posl-R (p.u.)	P _{LL-R} (p.u.)	I _{max} (p.u.)	I _{max} (A)	
0,089	0,14	36,97	47,87	85,84	0,924	57,795	

Fuente: El Autor.

La capacidad de transformación por la presencia de armónicos de corriente de acuerdo con la tabla 44 en el transformador de 15 kVA es de 14,051 kVA.

En la Tabla 45 se presenta un resumen de los resultados por la presencia de armónicos de corriente en el transformador de 15 kVA.

PÉRDIDAS CO CONDICION	N CARGAS TOT ES NO SINUSOI	ALES EN DALES	PÉRDIDAS TOTALES CON ARMÓNICOS	
$P_{LLHA}(p.u)$	$P_{LLHB}(p.u)$	P _{LLTH} (W)	P _H (W)	INCREMENTO DE PÉRDIDAS POR CIRCULACIÓN DE
0,149	0,0214	15,478	83,478	ARMÓNICOS
PÉRDIDAS CON CARGAS TOTALES EN CONDICIONES SINUSOIDALES			PÉRDIDAS TOTALES SIN ARMÓNICOS	
$P_{LLA}(p.u)$	$P_{LLB}(p.u)$	P _{LLT} (W)	P (W)	Δ_{PLL} (W)
0,148	0,0212	15,398	83,398	0,08

Tabla 45. Pérdidas en el transformador de 15 kVA.

Fuente: El Autor

Para el transformador monofásico de 25 kVA:

En la tabla 46 se presentan los parámetros del transformador monofásico de 25 kVA.

Potencia (kVA)	Тіро	Tensión en primario (kV)	Tensión en secundario (kV)	I prim (A)	I sec (A)
25	Monofásico	7,970	0,24	3,14	104,17
Pérdidas con carga(W)	Pérdidas en vacío (W)	Relación Transformación	R1 Ω (prim)	R2 Ω (sec)	
289	98	33,2083	12,32	0,0139]

Tabla 46. Parametros del transformador de 25 KVP	Tabla 46.	Parámetros	del	transformador	de	25	kVA
---	-----------	------------	-----	---------------	----	----	-----

Fuente: El Autor

En la tabla 47 se presentan las pérdidas parásitas totales, las pérdidas por corriente de Eddy, las otras pérdidas adicionales y las pérdidas óhmicas en condiciones normales. **Tabla 47.** Pérdidas parásitas totales, pérdidas por corriente de Eddy, otras pérdidas adicionales y pérdidas

óhmicas totales en condiciones normales.								
P _{TSL-R} (W)	$\begin{array}{c c} P_{TSL-R}(W) & P_{EC-R}(W) & P_{OSL-R}(W) & P_{DC}(W) \end{array}$							
16,8469	5,5595	11,29	272,1531					
Fuente: Autor.								

uente:	Autor

En la tabla 48 se puede observar las pérdidas nominales por corrientes parásitas tanto en el devanado primario como secundario.

Tabla 48. Pérdidas nominales por corrientes parásitas en el devanado primario y secundario del
transformador de 25 kVA.

Primario	Secundario				
2,2238	3,3357				
Fuente: El Autor.					

El espectro armónico tanto de la fase A y B se muestran en la tabla 49 y tabla 50 respectivamente.

	1 abia 49. Espectro armonico de la fase A del transformador de 25 kVA.								
	FASE A								
h	I _h	$\frac{I_h}{I_R}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$		
1	29,467	0,283	0,08002	1	1,00	0,080	0,080		
3	1,302	0,012	0,00016	9	2,41	0,001	0,000		
5	1,493	0,014	0,00021	25	3,62	0,005	0,001		
7	3,100	0,030	0,00089	49	4,74	0,043	0,004		
9	0,927	0,009	0,00008	81	5,80	0,006	0,000		
11	0,022	0,000	0,00000	121	6,81	0,000	0,000		
Σ	36,311	0,349	0,081	286,000	24,384	0,136	0,086		
			-						

Tabla 49. Espectro armónico de la fase A del transformador de 25 kVA.

Fuente: El Autor.

Tabla 50. Espectro armónico de la fase B del transformador de 25 kVA.

]	FASE B			
h	I _h	$\frac{I_h}{I_1}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$
1	36,050	0,346	0,11977	1	1,00	0,120	0,120
3	4,192	0,040	0,00162	9	2,41	0,015	0,004
5	3,258	0,031	0,00098	25	3,62	0,024	0,004
7	4,590	0,044	0,00194	49	4,74	0,095	0,009
9	1,113	0,011	0,00011	81	5,80	0,009	0,001
11	0,170	0,002	0,00000	121	6,81	0,000	0,000
Σ	49,373	0,474	0,124	286,000	24,384	0,264	0,137

Fuente: El Autor.

Los factores de pérdidas armónicas de la fase A y B se muestran en la tabla 51.

Tabla 51. Factores de pérdidas armónicas para la fase A y B del transformador de 25 kVA.

	FASE A			FASE B	
I (p.u.) ²	F _{HL}	F _{HL-STR}	I (p.u.) ²	F _{HL}	FHL-STR
0,2852	1,6765	1,0548	0,3527	2,1178	1,1019
		Fuente:	El Autor.		

En las tablas 52 se muestran las pérdidas adicionales causadas por la presencia armónicas de corriente en el transformador de distribución monofásico de 25 kVA para la fase A y B.

		FASE A		
		PÉRDIDA CON		CORRECCIÓN DE
	PÉRDIDA	CARGA BAJO	FACTOR DE	PÉRDIDAS CON
TIPO DE CARGA	NOMINAL	CORRIENTE	PÉRDIDA	CARGA BAJO
	(W)	ARMÓNICA	ARMÓNICA	CORRECCIÓN
		(W)		ARMÓNICA (W)
SIN CARGA	98	98		98
$DC(I^2R)$	272,15	22,14		22,14
CORRIENTE DE				
EDDY EN	5,56	0,452	1,676	0,758
DEVANADOS				
OTRAS PÉRDIDAS	11,29	0,9182	1,055	0,968
TOTAL	387,000	121,510		121,866
		FASE B		
		PÉRDIDA CON		CORRECCIÓN DE
	PÉRDIDA	CARGA BAJO	FACTOR DE	PÉRDIDAS CON
TIPO DE CARGA	NOMINAL	CORRIENTE	PÉRDIDA	CARGA BAJO
	(W)	ARMÓNICA	ARMÓNICA	CORRECCIÓN
		(W)		ARMÓNICA (W)
SIN CARGA	98	98		98
$DC(I^2R)$	272,15	33,863		33,863
CORRIENTE DE				
EDDY EN	5,56	0,692	2.118	1,465
DEVANADOS				
OTRAS PÉRDIDAS	11,29	1,404	1,102	1,548
TOTAL	387,000	133,959		134,876

Tabla 52. Cálculos de pérdidas adicionales causadas por la presencia de armónicos de corriente en el transformador de 25 kVA para la fase A y B.

Fuente: El Autor.

En la tabla 53 se muestra el resumen de los cálculos realizados para la fase A y B.

			FASE A		-	
$\mathbf{P}_{\mathrm{EC}}(\mathbf{W})$	P _{OSL} (W)	$P_{EC-R}(p.u.)$	P _{OSL-R} (p.u.)	P _{LL-R} (p.u.)	I _{max} (p.u.)	I _{max} (A)
0,758	0,97	7,33	11,65	19,99	0,884	92,067
			FASE B			
PEC (W)	Posl (W)	Р ЕС- R (р.u.)	Posl-r (p.u.)	Pll-r (p.u.)	I _{max} (p.u.)	I _{max} (A)
1,465	1,548	3,795	7,294	12,09	0,841	87,650
	1	Fı	ente Fl Autor			1

. 1 1 , . . 1 0

La capacidad de transformación por la presencia de armónicos de acuerdo con la tabla 53 en el transformador de 25 es de 21,566 kVA.

En la tabla 54 se presenta un resume de los resultados por la presencia de armónicos de corriente en el transformador de 25 kVA.

PÉRDIDAS CO CONDICION	N CARGAS TOT ES NO SINUSOI	ALES EN DALES	PÉRDIDAS TOTALES CON ARMÓNICOS	
$P_{LLHA}(p.u)$	$P_{LLHB}(p.u)$	P _{LLTH} (W)	P_H (W)	INCREMENTO DE PÉRDIDAS POR CIRCULACIÓN DE
0,088	0,1355	30,37	128,37	ARMÓNICOS
PÉRDIDAS CO CONDICIC	N CARGAS TOT	ALES EN ALES	PÉRDIDAS TOTALES SIN ARMÓNICOS	
$P_{LLA}(p.u)$	$P_{LLB}(p.u)$	P _{LLT} (W)	<i>P</i> (W)	Δ_{PLL} (W)

Tabla 54 Pérdidas en el transformador de 25 kVA

Fuente: El Autor

Para el transformador monofásico de 37,5 kVA:

En la tabla 55 se presentan los parámetros del transformador monofásico de 37,5 kVA.

Potencia (kVA)	Тіро	Tensión en primario (kV)	Tensión en secundario (kV)	I prim (A)	I sec (A)
37,5	Monofásico	7,970	0,24	4,71	156,25
Pérdidas con carga(W)	Pérdidas en vacío (W)	Relación Transformación	R1 Ω (prim)	R2 Ω (sec)	
403	130	33,2083	7,38	0,00774	

Tabla 55. Parámetros del transformador de 37.5 kVA

Fuente: El Autor

En la tabla 56 se presentan las pérdidas parásitas totales, las pérdidas por corriente de Eddy, las otras pérdidas adicionales y las pérdidas óhmicas en condiciones normales. **Tabla 56.** Pérdidas parásitas totales, pérdidas por corriente de Eddy, otras pérdidas adicionales y pérdidas ofimicas totales en condiciones normales.

P _{TSL-R} (W)	P _{EC-R} (W)	P _{OSL-R} (W)	P _{DC} (W)
50,6539	16,7157	33,94	352,3461
	Fuente:	El Autor	

En la tabla 57, se indican las pérdidas nominales por corrientes parásitas tanto en el devanado primario como secundario.

Tabla 57. Pérdidas nominales por corrientes parásitas en el devanado primario y secundario del transformador de 37.5 kVA.

Primario	Secundario
6,6863	10,0295
Fuente	: El Autor

El espectro armónico tanto de la fase A y B se indican en la tabla 58 y tabla 59 respectivamente.

	1 abia 30, 1	2spectro a		FASE A		uor uc 57,5 F	
h	I _h	$\frac{I_h}{I_R}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$
1	93,367	0,598	0,35706	1	1,00	0,357	0,357
3	8,885	0,057	0,00323	9	2,41	0,029	0,008
5	1,785	0,011	0,00013	25	3,62	0,003	0,000
7	2,763	0,018	0,00031	49	4,74	0,015	0,001
9	0,158	0,001	0,00000	81	5,80	0,000	0,000
11	2,467	0,016	0,00025	121	6,81	0,030	0,002
Σ	109,425	0,700	0,361	286,000	24,384	0,435	0,369
			Fuer	ite: El Auto	or		

Tabla 58. Espectro armónico de la fase A del transformador de 37,5 kVA.

Tabla 59. Espectro armónico de la fase B del transformador de 37,5 KV.

]	FASE B			
h	I _h	$\frac{I_h}{I_1}$	$\left(\frac{I_h}{I_1}\right)^2$	h ²	h ^{0.8}	$\left(\frac{I_h}{I_1}\right)^2 h^2$	$\left(\frac{I_h}{I_1}\right)^2 h^{0.8}$
1	93,400	0,598	0,35732	1	1,00	0,357	0,357
3	7,322	0,047	0,00220	9	2,41	0,020	0,005
5	2,258	0,014	0,00021	25	3,62	0,005	0,001
7	2,068	0,013	0,00018	49	4,74	0,009	0,001
9	0,737	0,005	0,00002	81	5,80	0,002	0,000
11	2,070	0,013	0,00018	121	6,81	0,021	0,001
Σ	107,855	0,690	0,360	286,000	24,384	0,414	0,366

Fuente: E	El Autor
-----------	----------

Los raciones de perdidas armonicas de la rase ray D se muestran en la tabia oc
--

	FASE A			FASE B	
I (p.u.) ²	F _{HL}	F _{HL-STR}	I (p.u.) ²	F _{HL}	F _{HL-STR}
0,6008	1,2050	1,0208	0,6001	1,1495	1,0151
		Fuente:	El Autor		

Tabla 60. Factores de pérdidas armónicas para la fase A y B del transformador de 37,5 kVA.

En las tablas 61 se muestran las pérdidas adicionales causadas por la presencia armónicas de corriente en el transformador de distribución monofásico de 37,5 kVA para la fase A y B.

 Tabla 61. Cálculos de pérdidas por armónicos de corriente en el transformador de 37,5 kVA para la fase A y B.

		FASE A			
		PÉRDIDA CON		CORRECCIÓN DE	
	PÉRDIDA	CARGA BAJO	FACTOR DE	PÉRDIDAS CON	
TIPO DE CARGA	NOMINAL	CORRIENTE	PÉRDIDA	CARGA BAJO	
	(W)	ARMÓNICA	ARMÓNICA	CORRECCIÓN	
		(W)		ARMÓNICA (W)	
SIN CARGA	130	130		130	
$DC(I^2R)$	352,35	127,194		127,194	
CORRIENTE DE					
EDDY EN	16,72	6,03	1,205	7,266	
DEVANADOS					
OTRAS PÉRDIDAS	33,94	12,251	1,021	12,508	
TOTAL	533,000	275,475		276,968	
		FASE B			
		PÉRDIDA CON		CORRECCIÓN DE	
	PÉRDIDA	CARGA BAJO	FACTOR DE	PÉRDIDAS CON	
TIPO DE CARGA	NOMINAL	CORRIENTE	PÉRDIDA	CARGA BAJO	
	(W)	ARMÓNICA	ARMÓNICA	CORRECCIÓN	
		(W)		ARMÓNICA (W)	
SIN CARGA	130	130		130	
$DC(I^2R)$	352,35	126,878		126,878	
CORRIENTE DE					
EDDY EN	16,72	6,02	1,149	6,916	
DEVANADOS					
OTRAS PÉRDIDAS	33,94	12,220	1,015	12,403	
TOTAL	533,000	275,118		276,197	

Fuente: El Autor

			FASE A			
PEC (W)	Posl (W)	Р ЕС- R (р.и.)	Posl-R (p.u.)	P _{LL-R} (p.u.)	I _{max} (p.u.)	I _{max} (A)
7,271	12,51	2,30	2,71	6,01	0,958	149,81
			FASE B			
PEC(W)	Posl (W)	Р ЕС- R (р.u.)	Posl-R (p.u.)	Pll-r (p.u.)	I _{max} (p.u.)	I _{max} (A)
6,919	12,40	2,42	2,74	6,15	0,968	151,378

En la tabla 62 se muestra el resumen de los cálculos realizados para la fase A y B.

 Tabla 62. Resultados finales de las pérdidas por armónicos de corriente para la fase A y B para el transformador de 37,5 kVA.

Fuente: El Autor

La capacidad de transformación por la presencia de armónicos de corriente de acuerdo con la tabla 62 el transformador de 37,5 kVA es de 36,143 kVA.

Seguidamente se calculan el incremento de las pérdidas por la circulación de armónicos en el transformador de 37,5 kVA que se muestran en la tabla 63.

PÉRDIDAS CO CONDICION	ON CARGAS TOT	TALES EN IDALES	PÉRDIDAS TOTALES CON ARMÓNICOS	
$P_{LLHA}(p.u)$	$P_{LLHB}(p.u)$	P _{LLTH} (W)	P_H (W)	INCREMENTO DE PÉRDIDAS POR CIRCULACIÓN DE
0,417	0,415	146,587	276,587	ARMÓNICOS
PÉRDIDAS CO CONDICIO	ON CARGAS TOT	TALES EN ALES	PÉRDIDAS TOTALES SIN ARMÓNICOS	
$P_{LLA}(p.u)$	$P_{LLB}(p.u)$	P_{LLT} (W)	<i>P</i> (W)	Δ_{PLL} (W)
0,413	0,412	145,299	275,299	1,288

Tabla 63. Pérdidas en el transformador de 37,5 kVA.

Fuente: El Autor

6.2. APLICACIÓN DE LA GUI PARA EL CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICOS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN.

Para el correcto funcionamiento de la aplicación GUI se presenta un flujograma en el anexo B para guiar al usuario.

A continuación, se va a evaluar el transformador monofásico de 10 kVA. Para hacer uso de la GUI se siguen los siguientes pasos:

1.- Se debe insertar el espectro armónico del transformador monofásico de 10 kVA en la platilla ya establecida de Microsoft Excel, esta plantilla se muestra en el anexo A. En la figura 32 se observa parte de la plantilla, donde primero se selecciona el transformador.

	l	Universidad Nacional de Loja							
		CI	EM						
	Base	e de datos: E	spectro Armó	nico					
		Transformador:	10 KVA	-					
			10 KVA 15 KVA						
	Fas	e A	25 KVA						
Hora	Orden armónico	Corriente del h-ésimo armónico	37,5 KVA Orden armónico	brriente del h-ésimo armónico					
	1		1						
	3		3						
005	5		5						
UUN	7		7						
	9		9						
	11		11						
	1		1						
	3		3						
01b	5		5						
0111	7		7						
	9		9						
	11		11						

Figura 32. Selección del transformador para insertar el espectro armónico de 10 kVA.

Seguidamente se inserta la corriente del armónico de la fase A y B como se indica en la figura 33.

		Universidad	Nacional de Lo	ja		
8	B	ase de datos	CIEM Espectro Arm	nónic	Insertar	corriente del
Insertar corr	iente del	Transformado	10 KVA	*	para las	24 horas del
armónico de la	fase A para			-	día.	
las 24 horas del	dia.	Fase A	F	ase B		20.
Hora	Orden armónico	Corriente de h-ésimo arminico	Orden armónico	Col	rriente del h-ésimo irménico	
	1		1			
	3		3			
00b	5		5			
001	7		7			
	9		9			
	11		11			
	1		1			
	3		3			
01b	5		5			
	7		7			
	9		9			
	11		11			
	1		1			
	3		3			
02b	5		5			
S Z II	7		7			
	9		9			
	11	1.1	11			

Figura 33. Insertar espectro armónico para la fase A y B del transformador de 10 kVA.

Por último, se realiza la siguiente acción: Archivo>>Guardar como, y se nombra de la siguiente manera "Espectro armónico 10 KVA", como se muestra en la figura 34.

🟫 🗀 Documentos > Nueva carpeta > IX Ciclo > guide > metodologia	a
Espectro armónico 10 KVA]
Libro de Excel (*.xlsx)	😡 Guardar
<u>Más opciones</u>	

Figura 34. Denominación del espectro armónico del transformador de 10 kVA.

2.- Se abre la aplicación GUI, se selecciona el transformador de 10 kVA y se carga los parámetros del transformador seleccionado, como se muestra en la figura 35.

-			UNIV	ERSIDA	DNA	CIONAL	DEL	OJA			
	CÁLC DE ARM	ULO DE PI ÓNICAS D	ÉRDIDAS E CORRIE	ADICIO	NALES	CAUSA	DAS F	OR LA	CIRCU DE D	ILACIÓN	
			Resultados	en presen	cia de co	rientes no	sinusoida	los		1	Carper Terrectro Arminico
Transformador	10 844		200	terai/A	mail	Increment	to PLL (W)	S-cart armör	ecos (kVA)		and the second second
nettos del transferando	10 kVA		018							-	CALCULAR
factoria controlat. S. (NVA)	15 AVA	12	ESN.								
Constant and the second second	37,5 KVA		545			_	_			~	Heprinit Reports
erdilana alle visicle incersionelle. Pri	R_040	52	-								
rotava av corga romoleka. M	LL (MA	142								GRA	FEAR
and the second se	-		1							Carrieta	Redenantal IX
			0.8							Sector Control	Fire A
raialtencia (il ence accuedera).	82.001	04345								1	
			0,6								
transe sociate bis bitwire, it		234105	122							Circlenter	N// Certer/IAI (E
mente torreral por secondario	E.E.(A) 41	000000	100								FeLD .
March 1997 Barris Barris Barris Barris			0.2							17	LB-STR
and a second										Ferdiova tob	ites sin protincale
			0	1.00		2.2	100	COL		Perchase total	tes out amonicas

Figura 35. Parámetros del transformador de 10 kVA.

3.- Se da clic en el botón "Cargar Espectro Armónico" que conduce a una sub-ventana de la aplicación. En esta ventana se carga la base de datos, es decir, el espectro armónico que previamente se introdujo en la plantilla de Microsoft Excel.

Se da clic en el botón "CARGAR" y se selecciona el espectro armónico deseado, como se muestra en la figura 36.

ectro A	rmonico	le las 24 h	oras del dia di	T T A K Ciclo + guide + metodologia	agia 🖉
005	A4	IhA	hB	Organizar • Nueva carpeta	0
01h	CA	RGAR	RESET	Acceso rápido Escritoria Deccargas Deccar	Tipo Higa de calco Higa de calco Higa de calco Higa de calco Higa de calco Higa de calco Higa de calco Carpeta de an Carpeta de an
				Nombre de archiver espectro amónico 100/04 (* dist	

Figura 36. Selección del espectro armónico.

4.- Con el espectro armónico seleccionado se procede a calcular los factores de pérdidas armónicas para la fase A y B, dando clic en el botón "Cálculo de los factores de pérdidas armónicas", como se muestra en la figura 37.

	hA	16A	hB	PhB		FHLA	FHLA-5TR	tsecA(pu)	FHLB	FHLB-STR	IsecB(pu)
00h	1	27.1500	1	25.3500 A	00h	1,2770	1.0277	0.6555	1,3442	1.0363	0.6134
	3	1.9776	3	2.2250	01h	1,2695	1.0262	0.7205	1.2108	1.0219	0.6296
	5	1,8650		2.0580	02h	1.1758	1.0167	0.6976	1.1518	1.0171	0.6362
	7	0.7560	7	0.8620	(03h	1.0593	5,0002	0.7953	1,1377	1,0147	0.6054
1		0.0000	9	0.7570	04h	1.0904	1.0097	0.0105	1.1719	1.0154	0.5757
	11	0.1300	11	0.1300	05h	1.1585	1.0182	0.7512	1,1912	1.0195	0.6516
018	1	29.0079	1	26.06/0	06h	1.1727	9.0215	1.0908	1.4173	1.0447	0.7141
		2.2256	3	1.6320	07h	1.3901	1,0489	0.9373	1.6478	1.0710	0.7935
		A 1778		0.6300	08h	1.3248	1,0440	1.2754	1.2052	1.0255	1,1049
		1.8558		0.6360	09h	1.2117	1.0292	1.3309	1.2718	1.0338	1.0216
	CARC	RA	RESET				Cálculo	de los factore	s de pérdida	s armónicas	1
							-				

Figura 37. Espectro armónico y cálculo de los factores de pérdidas armónicas para la fase A y B del transformador monofásico de 10 kVA.

5.- Se regresa a la pantalla principal de la aplicación con el botón "CONTINUAR". Aquí se procede a calcular las pérdidas adicionales causadas por la circulación de armónicas de corriente en los transformadores de distribución con el botón "Calcular".

Los resultados obtenidos se muestran en la figura 38, los cuales son las corrientes máximas del secundario de la fase A y B, el incremento de pérdidas y la capacidad reducida del transformador de 10 kVA ante corrientes no sinusoidales. También se grafican las corrientes fundamentales y efectivas de la fase A y B, el FHLA, FHLA-STR, FHLB, FHLB-STR, pérdidas con y sin armónicos de corriente.

Figura 38. Cálculos de las pérdidas adicionales causados por la circulación de armónicas de corriente en un transformador de 10 kVA usando la GUI.

6.- Por último, se obtiene un reporte donde se detallan todos los resultados, este reporte se muestra en el anexo C. Este reporte se guardará en la carpeta >>for_testing al instalar el ejecutable de la aplicación GUI. En la figura 39 se muestra una parte del reporte para visualizar como quedan los resultados obtenidos:

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

"CÁLCULO DE PERDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

REPORTE

PARÁMETROS DEL TRANSFORMADOR

I1 (A)	12(A)	R1(Ω)	R2(Ω)	K	PLL (W)	PNL(W)
1,2547	41,6667	37,07	0,0435	1	142	52
V1 (V)	V2(V)	Potenc	ia (kVA)			
7970	240		10]		

	Pérdidas nominales:								
Óhmicas (PDC)	Adicionales (PTSL)	Por corrientes parásitas (PEC-R)	Otras pérdidas adicionales (POSL-R)	Por corrientes parásitas en el devanado primario	Por corrientes parásitas en el devanado secundario (PECI-R)				
133,7928	8.2072	2.7084	5.4989	1.0834	1.6250				

Corr	iente fundame	ental							
hora	IA	lВ							
00	27,1500	25,3500							
01	29,8670	26,0670							

Figura 39. Reporte del cálculo de las pérdidas adicionales causadas por la circulación de armónicas de corriente en un transformador monofásico de 10 kVA.

Para evaluar el resto de los transformadores en análisis se siguen los pasos anteriormente descritos. Para ello primero se insertan los espectros armónicos en la plantilla establecida para los transformadores de 15, 25 y 37,5 kVA.

Se sigue el primer paso que se describió anteriormente y se obtiene los siguientes documentos de Microsoft Excel que se indican en la figura 40.

Nombre	Fecha de modifica	Tipo	Tamaño
Currents_Harmonics	25/10/2018 11:29	Carpeta de archivos	
Currents_Harmonics_resources	25/10/2018 11:24	Carpeta de archivos	
Anexo A	23/10/2018 14:43	Adobe Acrobat D	147 KB
📣 calculo	15/11/2018 17:49	Archivo FIG	65 KB
📋 calculo.m	15/11/2018 17:49	Archivo M	43 KB
📣 cargarej	15/11/2018 17:49	Archivo FIG	15 KB
📋 cargarej.m	15/11/2018 17:49	Archivo M	35 KB
Ciem	23/10/2018 13:34	Archivo PNG	61 KB
Currents_Harmonics.prj	25/10/2018 11:46	Archivo PRJ	7 KB
spectro armónico 10KVA	8/11/2018 9:07	Hoja de cálculo d	14 KB
spectro armónico 15KVA	8/11/2018 13:16	Hoja de cálculo d	14 KB
espectro armónico 25KVA	8/11/2018 16:36	Hoja de cálculo d	14 KB
espectro armónico 37,5KVA	8/11/2018 16:39	Hoja de cálculo d	14 KB
Plantilla para cargar espectro armónico	15/11/2018 15:29	Hoja de cálculo d	17 KB
a reporte	20/11/2018 13:23	Hoja de cálculo d	83 KB
🖬 unl1	23/10/2018 13:37	Archivo JPG	33 KB

Figura 40. Espectros armónicos de los transformadores de 15, 25 y 37,5 kVA.

Para el transformador monofásico de 15 kVA se obtienen los siguientes resultados:

1.- Se selecciona el transformador y se cargan los parámetros del transformador de 15 kVA, ver figura 41.

		UNIV	ERSIDA	AD NAG	CIONAL	DELO	DJA			1
	CÁLCULO D DE ARMÓNICA	E PÉRDIDAS S DE CORRII	ADICIO ENTE EN	NALES N LOS 1	CAUSA	DAS PI ORMAI	OR LA	CIRCUL DE DIS	ACIÓN TRIBUCIÓN	ELECTROWE
Transformador		Resultado	imasA	inati	intentes no s	ihiunoidal o PLL (W) S	i con armón	ices (kirA)	Carpor Council	e Arminica
mansformador	15 KVA -	006 018 025							GALCE	LAR
olancia saminal 2 (KVA)	25 AVA 19 37.5 kVA	03h 04b							therine R	apota
fratilans de vacile norminales. P Erdidaas de corga kommanas, P	RL (W) 10								GRAVICAR	î.
esisianza streca prevera, R	K. (D)	1	1						Correcte Anderestel IA	
esielenya éhimza secondera	. 42. (2) 1 625296	0.8							PHLA.STR	
armente visitanal por pranario.	0.447 1.862067								Corrente fundamental B	
artenie isvate por tecande	41.2.00	4.0							PHLB PHLD-GTR	
ective PC		0.2							Rérdidas totales sir armónicos	
		•	0 0	a z	0.4	0.6	0.8	1	Advantant totales care armédiation	6

Figura 41. Parámetros del transformador de 15 kVA.

2.- Se selecciona el espectro armónico para el transformador monofásico de 15 kVA como se visualiza en la figura 42.

pectro Armónico de las 24 horas de		 B Ruscar en metodologia
DOh	Organizar • Nueva carpeta Videos Nombre OneDrive Image: Constant of the sepectro armónico 37,5KVA Descargas Escritorio Discumentos Escritorio Imágenes Música Objetos 3D Currents, Harmonics, resources Videos Currents, Harmonics Windows (Ci) RECOVERV (D:)	IEE Image: Constraint of the second sec
1.852057	Red v C Nombre de archivo: espectro armónico 15KVA	~ (ak*)

Figura 42. Selección del espectro armónico para el transformador monofásico de 15 kVA.

3.- Se calcula los factores de pérdidas armónicas para la fase A y B, estos factores se muestran en la figura 43.

10000	hA-	iha.	116	115		FHLA	FHLA-STR	hecA[pu]	FHLB	FHLB-STR	isecB(pu)	1
00h	1	23.2500	1.	4.7030 A	00h	1.2307	1.0289	0.3745	1.3442	1 \$388	2.1419	i
_	- 2	2,1350	2	0.9470	01h	1.5112	1.0355	8.3371	1,3007	1.0396	0.1625	£
-	5	1.4930	5	0.602.0	02h	1.2596	1.0299	0.3678	1.1393	1.0151	0.1783	£.
	7	0.5680	E.	0.1470	03h	1,2633	1.8327	0.3556	1,2221	1,0244	0.1379	ŝ.
-	. 8	0.4900		0.2400	04h	1,2907	1.8345	8.3045	1.3034	1 8361	0.1456	£.
-1/	11	0.0720	11	0.1600	05h	1.1606	1.0206	0.4350	1.2908	1,0413	0.1700	£.
/In	2	25.5830	1	10.0070	06h	1.2645	1.0321	8.4308	1,2342	1.0002	0.1727	Ĩ.
	-	1.6136		A 8630	07h	1.4250	1.0493	0.3203	1,4497	1.0518	0.1586	ŝ.
-	2	0.6530	1	0.3288	06h	1.5754	1.0693	0.3327	1.4370	1.0601	0.1347	ŝ.
		8.4470		A.2236	09h	1.3515	1.9435	0.3261	1.6551	1.0712	0,1443	
	CARG	IAR	RESET				Câlculo	de los factore	s de pérdida	s ermónicas	1	

Figura 43. Espectro armónico y cálculo de los factores de pérdidas armónicas para la fase A y B del transformador de 15 kVA.

4.- Se calcula las pérdidas adicionales causadas por la circulación de armónicas de corriente en el transformador monofásico de 15 kVA, los resultados se muestran en la figura 44.

-			UNIVI	ERSIDA	DNAC	IONAL DE LO	JA		1
	CÁ DE A	LCULO DE RMÓNICAS	PÉRDIDAS DE CORRIE	ADICION	LOS T	CAUSADAS PO RANSFORMAD	OR LA CIRCU ORES DE DI	LACIÓN STRIBUCIÓN	ELECTROWED
			Reultados	en presenco	is de corr	ientes no sinusoidale		Canality	weiters Adventures
Transformador	18.1412	100		ImasA	ImacB	Increments PLL (W) 54	on emonicos (RVA)	17772555	SA EN (est
The second se	12 894	71	30%	12,2908	57.790	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14,0072	A	RECORD.
imetros del transformati			0.11	10 9401	48.164	1 1 1 1 1 1 1	14 3177	EA	CULAR
	1	-	716	KX.0000	10.755	2 6793	14.1676	200	
Foliarcia tominal 5 (KVA)		20. MA	0.04	58 5128	58,210	1 1002	14.0074		1000
Perditas de vacio normales. P Perditas de carga normales. I	4L, (W) PLL, (W)	162	Corriente No	edamontal de	ia fose A d	warte los 24h del dia		GAVICAR	1
Resiltarical Atomia provana, M	1, 101	215	40			8		Cerenta fundamental	4
Residencia Invica estandora	RU. (D):	12228	35	-0-0	Currierde fur	Al lements	1	FILA-STR	
carriente nonnoel par armano."	H. calc	Consumer of	S.m.			and	Ju .	Corrects Testismental	n
	No.	and the second s	4 10	0	-0	and the second s	1		
Conservation in contrast per second an	0.8.6	191	35	al.	1	J.	8	191.5	
Factor H		the state of the s	20	8	240			Parcidae totales att annie	128
			15	5		10 15	20 25	Perditas totales con article	Norm

Figura 44. Cálculos de las pérdidas adicionales causados por la circulación de armónicas de corriente en un transformador de 15 kVA usando la GUI.

5.- Por último, se obtiene el reporte donde se detallan todos los resultados, este reporte se muestra en el anexo D, este reporte se guardará en la carpeta >>for_testing al instalar el ejecutable de la aplicación GUI.

Para el transformador monofásico de 25 kVA se obtienen los siguientes resultados:

1.- Se selecciona el transformador monofásico de 25 kVA y se cargan los parámetros de este, ver figura 45.

Figura 45. Parámetros del transformador monofásico de 25 kVA.

2.- Se selecciona el espectro armónico para el transformador de 25 kVA, como se muestra en la figura 46.
 canjanj 			_	Abrir			×
Espectro	Armónico d	e las 24 h	oras de		Ciclo + guide + metodologia 🛛 🗸 Ö	Buscar en metodolo	Q, sigi
005	hA	lhA	hB	Organizar • Nueva ca	npeta	(ji)	• 🛯 0
. 01h	CAS	IGAR	RES	Conceptive Conception	reporte Plantilla para cargar espectra armónico Plantilla para cargar espectra armónico espectro armónico 37,5KVA espectro armónico 15KVA espectro armónico 15KVA Currents_Harmonics_resources Currents_Harmonics	29/11/2018 13:23 15/11/2018 13:29 8/11/2018 15:29 8/11/2018 16:39 8/11/2018 16:36 8/11/2018 15:16 8/11/2018 15:16 8/11/2018 15:16 8/11/2018 15:16 25/10/2018 11:29	Heja de cálculo e Heja de cálculo e Carpeta de archit Curpeta de archit
				🚅 Red 👻	¢		>
_	_		0.4 b	Nomi	ore de archivo: espectro armónico 25KVA 🛛 🗸	(*.alsa)	4
R. (A)	04.166667		0,4			Abrir	Cancelar

Figura 46. Selección del espectro armónico para el transformador de 25 kVA.

3.- Se calcula los factores de pérdidas armónicas para la fase A y B, estos factores se muestran en la figura 47.

1422	nA.	ina	18	118		FHLA	FHLA-STR	IsecA(pu)	FHEB	FHLB-STR	Isec8(pu)	
00h	1	29.4670	1	36.0500 A	00h	1.6755	1.0548	0.2652	2.1178	1.1019	0.3527	ř.
	3	1.3020	3	4.1920	01h	1.5550	1.0443	0.2013	2.0994	1.0977	0.3802	ŝ
_	5	1.4930	5	1,2580	d2h	1,8147	1.0655	9.2438	2.2218	1,1067	0.2715	ŝ
_	7	3 1080	r	4.5900	03h	1.4943	1.0393	8,2792	2.2696	1.1122	0.2740	ŧ.
-		0.9270	9	1.1130	04h	1.6176	1.0486	0.2534	2.2428	1.1070	0.2616	ŝ,
	11	0.0220	11	0.1700	05h	1 4925	1.0388	0.2523	1.6415	1.0545	0.2979	k
016	1	29.1170	1	30.7330	06h	1.4123	1.0381	0.2651	1.9224	1.0858	0.2776	ŝ
		0.6290		3.0190	.07h	1.5947	1.0588	0.2615	1.9518	1.0905	0.5048	ŝ
		1 5030	2	2.6700	08h	1.9705	1.0977	0.2781	1.4386	1.0444	0.4738	ŝ
		0.0730	-	n 2950 W	09h	1 4887	1.0512	0.3577	1.8990	1.0099	0.4065	Ē
	CAR	IAR	RESET				Cálcul	de los factore	s de pérdida	s armónicas		

Figura 47. Espectro armónico y cálculo de los factores de pérdidas armónicas para la fase A y B del transformador de 25 kVA.

4.- Se calcula las pérdidas adicionales causadas por la circulación de armónicas de corriente en el transformador monofásico de 25 kVA, los resultados se muestran en la figura 48.

		UNIVE	RSIDA	D NAC	IONAL DE LOJA	ł.		
C/ DE A	ÁLCULO DE P ARMÓNICAS E	PÉRDIDAS /	ADICION NTE EN	LOS TI	CAUSADAS POR	LA CIRCULAC		ECTROME
Transformation		Resultados	immA	ia de corri Imadi	entes no sinunoidales Inscremento PLL (W) 5 con a	monicos (KVA)	Cargor Espectra Arminico	
netros del transforandor	*1	00h 01k 02h	82.9672 90.6256 90.2309	67 8508 87 5791 86 4224	4.2071 3.8871 2.9822 1.8881	21.5461 4 21.7463 (0) 21.2114	CALCIEAR	
Henda nommal, S. (KVA)	2	aah	92,7351	60.2105	2.6523	21.4785 *	Ingristic Reports	
volaas ar carga volmaars, RJ, (11) esaterice Mirma privara, R1, (2) esaterica Annas secondaris, R2, (2)	980 11 0.912	-Cornerlo for 55 - 10 - 45 -	damental da	le tese A d	functionmental IA		GRAFICAR similar fundamental la Filipa	
ornante surmoal por presente, R. (All 19	3.200840	(¥)¥1		94	A A		muk-sik preside fundemental B DB-B	
ornante comparipor sacundaro, D, (A) edur 6	104.100007	36.3	vs.	000	8 bad	-	MILE-STR Ides takes sin amiliance	
		25	5		0 15 20	25 1913	das totales con emdisicos	

Figura 48. Cálculos de las pérdidas adicionales causados por la circulación de armónicas de corriente en un transformador de 25 kVA usando la GUI.

5.- Por último, se obtiene el reporte donde se detallan todos los resultados, este reporte se muestra en el anexo E, este reporte se guardará en la carpeta >>for_testing al instalar el ejecutable de la aplicación GUI.

Para el transformador monofásico de 37.5 kVA se obtienen los siguientes resultados:

1.- Se selecciona el transformador monofásico de 37.5 kVA y se cargan los parámetros del mismo, como se muestra en la figura 49.

Figura 49. Parámetros del transformador de 37,5 kVA.

2.- Se selecciona el espectro armónico para el transformador de 37,5 kVA como se muestra en la figura 50.

et carbied			_	Abrir			×
Espectro A	rmónico de	las 24 hor	ras de	🛧 📴 « IX	Ciclo > guide > metodologia 🛛 🗸 친	Butcar en metodolo	qia p
00h	hA	lhA	hB	Organizar • Nueva u	irpeta	[85]	• 🗉 0
01h	CARGJ	AR	RES	Videos * CneDrive Este equipo Documentos Escritorio Escritorio Música Objetos 3D Videos Videos Nindows (C:) RECOVERY (D:)	Nombre Plantillo para cargar espectro armónico Plantillo para cargar espectro armónico plantillo para cargar espectro armónico plantillo armónico 37,5KVA plantillo armónico 25KVA plantillo armónico 15KVA plantillo armónico 16KVA plantillo armónico 10KVA Currents_Harmonics Currents_Harmonics	Fecha de modifica 20/11/2018 18:23 15/11/2018 18:29 8/11/2018 16:36 8/11/2018 16:36 8/11/2018 13:16 8/11/2018 13:16 8/11/2018 13:16 8/11/2018 13:16 8/11/2018 11:29	Tipo Heja de cálculo Heja de cálculo Heja de cálculo Heja de cálculo Heja de cálculo Carpeta de arch Carpeta de arch
(A)	4705144			red V	 tre de archive: aspectro armónico 37,5KVA	(*ato)	, ,
10.00	162.76		0.4			Abre 8	Cancelar

Figura 50. Selección del espectro armónico para el transformador de 37,5 kVA.

3.- Se calcula los factores de pérdidas armónicas para la fase A y B, estos factores se muestran en la figura 51.

01h	1 3 5 7 9 11 1 3 5 7 8	93.3670 8.8855 1.7850 2.7630 0.1580 2.4678 105.5000 7.9500 2.2480 3.2870 8.4978	1 5 7 9 11 1 3 5 7 8	83.4000 ∧ 7.3228 2.2580 2.0680 0.7570 2.3708 102.1570 6.8480 1.8570 1.4808 1.4808 1.4808	00h 01h 02h 03h 04h 05h 06h 07h 08h	1,2050 1,1728 1,1591 1,2625 1,1436 1,2142 1,2037 1,2405 1,1857 1,1346	1,5208 1,0162 1,0165 1,0225 1,0295 1,0295 1,0290 1,0332 1,0251 1,0179	0 8008 0 6770 0 6355 0 6156 0 8869 0 8862 0 8862 0 8862 0 8862 0 8869 0 8580 0 85789 0 85842	1 1495 1 0938 1 1210 1 1213 1 1638 1 1641 1 1641 1 1807 1 0761	1 0151 1 0699 1 0131 1 0235 1 0248 1 0263 1 0264 1 0264 1 0148 1 0104	0 6001 0 6555 0 5314 0 5709 0 7476 0 9245 0 8138 0 7554 0 7419 0 6872
	CAR	AR	RESET				Cálculo	de los factore	s de pérdida	a armónicas	1

Figura 51. Espectro armónico y cálculo de los factores de pérdidas armónicas para la fase A y B del transformador de 37,5 kVA.

4.- Se calcula las pérdidas adicionales causadas por la circulación de armónicas de corriente en el transformador monofásico de 25 kVA, los resultados se muestran en la figura 52.

Figura 52. Cálculos de las pérdidas adicionales causados por la circulación de armónicas de corriente en un transformador de 37,5 kVA usando la GUI.

5.- Por último, se obtiene el reporte donde se detallan todos los resultados, este reporte se muestra en el anexo D, este reporte se guardará en la carpeta >>for_testing al instalar el ejecutable de la aplicación GUI.

7. DISCUSIÓN

En los últimos años el uso de dispositivos electrónicos de potencia a nivel residencial, comercial e industrial ha crecido considerablemente, generando la circulación de corrientes armónicas en el sistema de distribución de energía. Los armónicos de corriente causan pérdidas adicionales en el transformador de distribución monofásico que aumenta la temperatura y reduce la vida útil del equipo.

A partir de la norma ANSI/IEEE C57.110TM-2008, que permite evaluar el transformador de distribución monofásico ante la presencia de corrientes no sinusoidales, se desarrolló la interfaz gráfica de usuario (GUI) para determinar el impacto que generan los armónicos de corriente en los trasformadores monofásicos de 10, 15, 25 y 37.5 kVA. Los resultados obtenidos por la aplicación desarrollada permiten cuantificar las pérdidas adicionales en los transformadores de distribución monofásicos antes mencionados cuando estos alimentan cargas no lineales, esto se observa en las figuras 38, 44, 48 y 52.

Estos resultados confirman la validez de la secuencia de cálculo propuesta en el procedimiento de cálculo desarrollado en el presente trabajo, esta secuencia de cálculos se muestra en la figura 12 en donde se presenta el algoritmo de solución mediante grafos dicromáticos, ya que se llega a las mismas conclusiones expuestas por (Sanjay & Laxman, 2011) y (Díaz, Carvajal, Velasco, Plata, & Giraldo, 2014), determinando que las armónicas de corriente generan calentamientos adicionales en los transformadores monofásicos inmersos en líquido debido al incremento de las pérdidas y estos transformadores existentes deben ser desclasificados.

Cabe mencionar que los transformadores de distribución monofásicos analizados alimentan cargas monofásicas residenciales y pertenecen a las zonas de: el transformador de 10 kVA a la Ruta de Taxiche-Malacatos, el transformador de 15 kVA a Nambacola-Loja, el transformador de 25 kVA a Valladolid-Zamora Chinchipe y el transformador de 37.5 kVA a Gualaquiza-Morona Santiago.

8. CONCLUSIONES

- De la revisión bibliográfica se determinó que la norma ANSI/IEEE C57.110, permite calcular las pérdidas adicionales causadas por los efectos de las corrientes armónicas que producen una pérdida de capacidad de transformación. Pudiendo determinarse las ecuaciones necesarias para determinar dichas pérdidas, lo cual constituye un paso hacia la desclasificación de los transformadores.
- La metodología expuesta en el libro de Automatización de (FRAGA, GONZÁLEZ, & BRAVO, 1989) permitió desarrollar la secuencia de cálculo que contiene el algoritmo a partir de la metodología basada en la norma ANSI/IEEE C57.110 que permite evaluar transformadores de distribución monofásicos ante la presencia de corrientes no sinusoidales.
- Se desarrolló una aplicación GUI en el software MATLAB a partir del algoritmo desarrollado en base a la norma ANSI/IEEE C57.110, la aplicación calcula las pérdidas adicionales causadas por la circulación de armónicas de corriente en los trasformadores de distribución monofásicos de 10, 15, 25 y 37,5 kVA. Esto representa una ayuda al cálculo, pues es de forma automática permitiendo obtener los resultados rápidos y precisos, brindando facilidad para el análisis.
- Para verificar que el aplicativo desarrollado, de los mismos cálculos que al emplear el método manual, se evaluó los transformadores monofásicos de 10, 15, 25 y 37.5 kVA mediante la metodología analítica y automática para un mismo espectro armónico y un mismo tiempo (00:00h), obteniendo los mismos resultados. Para las distorsiones armónicas de corriente presentadas en las figuras 37, 43, 47 y 51 se determinó la desclasificación de los transformadores monofásicos: la capacidad de 10 kVA se desclasificó a 9,42 kVA, la capacidad de 15 kVA se desclasificó a 14,05 kVA, la capacidad de 25 kVA se desclasificó a 21,56 kVA y la capacidad de 37,5 kVA se desclasificó a 36,14 kVA.

9. RECOMENDACIONES

- En futuras investigaciones se debe evaluar modificar el intervalo de tiempo de análisis del espectro armónico, y buscar un método que permita interactuar con los informes de calidad de energía que reportan los analizadores de calidad de energía.
- En otras investigaciones se debería incorporar como criterio de análisis las técnicas que se presentan en el informe de INECEL 621.393, debido a que los transformadores sumergidos en aceite funcionan las 24 horas del día, sin afectar su vida útil, siempre y cuando la temperatura ambiente promedio durante las 24 horas del día no exceda de 30°C y su máxima sobrepase los 40°C.

10. BIBLIOGRAFÍA

- Acevedo Donoso, F. (2013). Componentes armónicas en redes de distribución eléctricas.
- Álvares J. (2009). Transformadores.
- Amit, G., & Ranjana, S. (2011). Computation of transformer losses ubder the effects of non-sinusoidal currents. Advanced computing: An international journal (ACIJ), 91-104.
- ARCONEL 005/18. (2018). Calidad del servicio de distribución y comercialización de la energía eléctrica. Quito.
- Bardales.J.V. (2010). Análisis del desmpeño de los transformadores ante las presencia de armónicos.
- Betancourt Aguilar, J. P. (2016). Impacto de los armónicos de corriente en los trasnformadares de distribución monofásicos. Loja.
- CAMACHO ORTEGA, L. (2017). Estimación de la demanda eléctrica de la cocina de inducción por análisis clúster. LOJA.
- Capelo.F.M., G. (2017). Análisis de la eficiencia en trasnformadores: cambios en las normativas y sus consecuencias. Cantabría.
- Castañeda, O., & Castañeda, W. (2015). Análisis de calidad de energía acerca de la calidad del producto e influencia de armónicos de corriente dentro del área de concesión de CNEL-MILAGRO. *CENACE*, 76-85.
- Chapman, D. (2001). *Armónicos causas y efectos*. COPPER DEVELOPMENT ASSOCIATION UK.
- CONELEC. (2011). ESTADÍSTICA DEL SECTOR. QUITO.
- D.UMANS, A. Y. (2000). Máquinas eléctricas. Barcelona: HISPANO EUROPEA.
- Dariel, A. J. (2013). Armónicos en sistemas eléctricos. IEB S.A.
- Díaz P, J. G., Arcila, J., & Steblina, C. (2008). Efecto del uso masivo de bombillos ahorradores de energía sobre los transformadores de distribución. *Ingeniería UC*, 69-76.
- Díaz, R., Carvajal, G., Velasco, J. C., Plata, G., & Giraldo, W. (2014). Recomendaciones prácticas para la evaluación de la carga de un transformador sometido a corrientes no sinusoidales. *INGE CUC*, 63-74.
- ECUATRAN S.A. (2018). Transforamdores de distribución (monofásicos y trifásicos). QUITO.
- Elías, G., Cea, M., & Manassero, U. (2014). Estudio de desclasificación de transformadores de distribución de la ciudad de Santa Fe.
- EMPRESA ELÉCTRICA REGIONAL DEL SUR S.A. (2012). Normas técnicas para el diseño de redes eléctricas urbanas y rurales. LOJA.
- Faiz, J., Sharifian, M., Fakheri, S., & Sabet-Marzooghi, E. (2004). Derating of distribution transformers for non-sinusoidal load currents using finite element method. *IRANIAN JOURNAL OF SCIENCE & TECHNOLOGY*, 315-322.
- FRAGA, B. D., GONZÁLEZ, E. F., & BRAVO, T. D. (1989). *OPTIMIZACIÓN*. LA HABANA: ISPJAE.
- GOMEZ SAGNER, D. I. (2007). ANALISIS DE ESTACIONALIDAD DE LA CURVA DE DEMANDA PARA CLIENTES BT-1. SANTIAGO.
- Gómez-Sarduy, J., Quispe, E., Reyes-Calvo, R., Sousa-Santos, V., & Viego-Felipe, P. (2014). Influencia de los armónicos de corriente sobre las péridas en los trasnformadores de distribución monofásicos con derivación central. *El hombre* y la máquina, 33-43.
- Guerrero Barragán, D. (2010). Manual de interfaz gráfica de usuario en MATLAB.

- Hernández, O., Valido, R., & Sánchez, J. G. (2005). El problema de los armónicos en los transformadores. *TRABAJOS TERORICOEXPERIMENTALES "Vol. XXVI, No2/2005"*.
- Hernández.R.D. (2015). Modelamiento de los transformadores de distribución para estudios de armónicos, comportamiento de las protecciones de sobrecorriente, pérdidas de energía y disminución del tiempo de vida, aplicado en la empresa eléctrica de Ambato S.A. Quito.
- Herrera.J.C. (1997). Determinación de la potemcia de transformadores para alimentar cargas no lineales.
- IEEE std C57.110. (2008). *IEEE Recommended practice for establishing liquid-filled* and dry-tuype power and distribution transformer capability when supplying nonsinusoidal load currents. NEW YORK: IEEE Std C57.110.
- IEEE.Std.519-1992. (s.f.). Recomendaciones Prácticas y Requirimientos de la IEEE para el Control de Armónicos en Sistemas Eléctricos de Potencia.
- INATRA. (2018). Monofásicos de distribución. GUAYAQUIL.
- Insituto Ecuatoriano de Normalización. (2004). *Transformadores de distribución nuevos monofásicos, valores de corriente sin carga, pérdidas y voltaje de cortocircuito.* QUITO: INEN.
- Llamas, T. A., & Tejada, P. A. (2015). *Efectos de las armónicas en los sistemas eléctricos*.
- M.Shareghi, B.T.Phung, M.S.Naderi, E.Ambikairajah, & T.R.Blackburn. (2012). Effects of current and voltaje harmonics on distribution transformer losses. *IEEE INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS*.
- Marulanda Gonzales, L. G. (2015). *Efectos de los armónicos en los transforamdores de distribución*. Universidad del Valle.
- Mora.J., F. (2003). Máquinas eléctricas. Madrid: McGRAW-HILL.
- NTE INEN 2131. (2004). TRANSFORMADORES DE DISTRIBUCIÓN VALORES NOMINALES DE POTENCIAS APARENTES. QUITO.
- Pila Rocha, J. D., & Toapanta Morejón, K. I. (2012). Aplicación del equipo MIT 520/2 en la prueba de aislamiento sólido para transformadores de distribución monofásicos y trifásicos en el laboratorio de pruebas de transformadores, con la elaboración de un programa de simulación. Obtenido de Universidad Técnica de Cotopaxi- Biblioteca General: http://repositorio.utc.edu.ec/handle/27000/868
- Preciado Mite, G. J., & Rodas Herrera, J. A. (2015). *Diseño para la construcción de los transformadores de distribución monofásico tipo tanque*. Guayaquil: Universidad Politécnica Salesiana.
- Romero.H. (2013). METODLOGÍA PARA DERRATEO DE TRANSFORMADORES QUE ATIENDEN CARGAS NO LINEALES PARA USO COMERCIAL E INDUSTRIAL.
- S.B.Sadati, A.Tahani, B.Darvishi, H.Yousefi, & M.Dargahi. (2008). Comparison of distribution transformer losses and capacity under linear and harmonic loads. 2nd IEEE INTERNACIONAL CONFERENCE ON POWER ENERGY.
- Sánchez, Q. M., & Ruggero, R. (2014). Incidencias de cargas no lineales en transformadores de distribución.
- Sanjay, A. D., & Laxman, M. W. (2011). ANALYSIS OF DISTRIBUTION TRANSFORMER PERFORMANCE UNDER NON-LINEAR BALANCED LOAD CONIDTIONS AND ITS REMEDIAL MEASURES. INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGY AND ADVANCED ENGINEERING (IJETAE), Volume1, Issue2, 152-161.

Schneider Electric . (s.f.). Detección y filtrados de armónicos.

- Tapia D F, L. (2014). Propuesta para la correcciónde corrientes armónicas en los sistemas de distribución eléctrica de media tensión dirigida a la parte industrial de la ciudad de Cuenca. CUENCA.
- Tellez Ramírez, E. (s.f.). *Distorsión armónica*. AP&C, AUTOMATIZACIÓN PRODUCTIVIDAD Y CALIDAD S.A DE C.V.
- Toasa, J. (2011). Propuesta de guía para selección de transforamdores de dsitribución con énfasis en su nivel de carga. Quito.
- UTC. (s.f.). Fundamentos teóricos Transformadores.
- Vidal, A., & Valenzuela, V. (2010). Estudio de contaminación armónica en la universidad del Bío. CONCEPCIÓN.

11. ANEXOS

Anexo A. Plantilla para insertar el espectro armónico de las 24 horas del día.

En la siguiente plantilla solo se ingresan los datos de la corriente del h-ésimo armónico tanto de la fase A como de la fase B. Es importante ingresar correctamente los datos para obtener resultados idóneos.

	F	ase A	Fa	ase B
Hora	Orden armónico	Corriente del h-ésimo armónico	Orden armónico	Corriente del h-ésimo armónico
	1	93,367	1	93,400
	3	8,885	3	7,322
00h	5	1,785	5	2,258
UUN	7	2,763	7	2,068
	9	0,158	9	0,737
	11	2,467	11	2,070
	1	105,5	1	102,167
	3	7,95	3	6,848
016	5	2,248	5	1,807
010	7	3,287	7	1,49
	9	0,527	9	0,43
	11	2,53	11	1,848
	1	98,833	1	82,733
	3	8,538	3	6,565
024	5	1,797	5	1,563
UZN	7	2,992	7	1,335
	9	0,473	9	0,168
	11	2,51	11	1,69
	1	95,6	1	88,85
	3	9,693	3	7,47
024	5	2,237	5	0,923
USN	7	2,952	7	1,605
	9	0,4	9	0,095
	11	2,187	11	1,765
	1	135,100	1	115,950
04h	3	14,150	3	13,392
	5	1,953	5	3,812

Base de datos: Espectro Armónico

Transformador: 37,5 kVA

	7	3,958	7	2,435
	9	0,327	9	0,345
	11	1,30 <mark>2</mark>	11	1,145
	1	132,567	1	143,283
	3	17,167	3	17,7
05h	5	2,31	5	4,077
0.511	7	4,452	7	2,385
	9	0,852	9	0,632
	11	1,68	11	1,335
	1	136,85	1	126,083
	3	17,983	3	15,733
06h	5	2,952	5	4,517
0011	7	3,917	7	1,817
	9	0,578	9	0,652
	11	1,652	11	1,197
	1	105	1	117,2
	3	14,217	3	14,5
076	5	3,415	5	3,813
071	7	3,625	7	2,543
	9	0,493	9	1,113
	11	1,153	11	0,862
	1	101,567	1	115,383
	3	11,567	3	10,508
006	5	3,583	5	3,487
Uon	7	3,015	7	1,345
	9	0,602	9	0,978
	11	0,917	11	0,347
	1	90,817	1	94,583
	3	8,193	3	6,648
00h	5	3,633	5	2,91
0911	7	2,078	7	1,177
	9	0,808	9	0,872
	11	0,262	11	0,095
	1	80,217	1	80,117
	3	6,092	3	5,242
104	5	2,785	5	2,363
TOU	7	1,868	7	1,25
	9	0,692	9	0,462
	11	0,127	11	0,125

	1	80,833	1	76,283
	3	5,567	3	3,888
444	5	3,12	5	2,457
110	7	1,598	7	1,042
	9	0,492	9	0,212
	11	0,03	11	0,327
	1	75,667	1	78,75
	3	5,105	3	3,937
	5	3,395	5	2,478
12n	7	1,73	7	1,208
	9	0,24	9	0,297
	11	0,17	11	0,242
	1	73,6	1	76,183
	3	5,378	3	3,7
4.24	5	3,467	5	2,155
130	7	1,902	7	1,343
	9	0,34 9		0,442
	11	0,105	11	0,158
	1	69,7	1	74,133
	3	5,022	3	3,3
146	5	2,867	5	1,398
140	7	1,795 7		1,02
	9	0,492 9		0,43
	11	0,072	11	0,43
	1	83,817	1	80,867
	3	6,933	3	4,737
156	5	2,427	5	1,038
1211	7	1,838	7	0,862
	9	0,527	9	0,522
	11	0,452	11	0,44
	1	87,533	1	85,567
	3	7,26	3	6,575
16h	5	2,133	5	1,322
1011	7	1,912	7	0,503
	9	0,327	9	0,295
	11	1,293	11	0,862
	1	73,95	1	75,467
17h	3	7,037	3	6,577
	5	0,808	5	1,53

	7	1,543	7	0,967
	9	0,337	9	0,325
	11	1,482	11	1,24
	1	70,417	1	79,867
	3	6,575	3	6,955
104	5	1,113	5	1,293
180	7	1,848	7	1,523
	9	0,073	9	0,43
	11	1,617	11	1,47
	1	73,75	1	77,917
	3	7,143	3	4,663
	5	1,137	5	0,923
19h	7	1,743	7	1,357
	9	0,03	9	0,523
	11	1,722	11	1,147
	1	81,483	1	80,767
	3	7,858	3	6,472
204	5	1,155	5	1,377
20n	7	2,025	7	1,545
	9	0,042	9	0,42
	11	1,945	11	1,513
	1	73,4	1	81,483
	3	7,3	3	6,858
244	5	1,177	5	1,3
210	7	2,185	7	1,953
	9	0,15	9	0,307
	11	1,963	11	1,68
	1	88,117	1	88,850
	מ	6 615	2	6 985
	3	0,015	3	0,303
224	5	0,947	5	1,082
22h	5 7	0,947 2,425	3 5 7	1,082 1,962
22h	5 7 9	0,947 2,425 0,220	3 5 7 9	1,082 1,962 0,422
22h	5 7 9 11	0,947 2,425 0,220 2,048	3 5 7 9 11	1,082 1,962 0,422 1,690
22h	5 7 9 11 1	0,913 0,947 2,425 0,220 2,048 88,1	3 5 7 9 11 1	1,082 1,962 0,422 1,690 96,233
22h	5 7 9 11 1 3	0,947 2,425 0,220 2,048 88,1 8,33	3 5 7 9 11 1 3	1,082 1,962 0,422 1,690 96,233 8,872
22h	5 7 9 11 1 3 5	0,947 2,425 0,220 2,048 88,1 8,33 1,377	3 5 7 9 11 1 3 5	1,082 1,962 0,422 1,690 96,233 8,872 1,91
22h 23h	5 7 9 11 1 3 5 7	0,947 2,425 0,220 2,048 88,1 8,33 1,377 2,898	3 5 7 9 11 1 3 5 5 7	1,082 1,962 0,422 1,690 96,233 8,872 1,91 1,87
22h 23h	5 7 9 11 1 3 5 7 9	0,947 2,425 0,220 2,048 88,1 8,33 1,377 2,898 0,233	3 5 7 9 11 1 3 5 7 9	1,082 1,962 0,422 1,690 96,233 8,872 1,91 1,87 0,525

Anexo B. Flujograma para el uso de la aplicación GUI para el cálculo de las pérdidas adicionales de las pérdidas causadas por la circulación de armónicos de corriente en los transformadores de distribución monofásicos de 10, 15, 25 y 37.5 kVA sumergidos en aceite.

Anexo C. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en los transformadores de distribución monofásicos de 10 kVA.

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

REPORTE

PARÁMETROS DEL TRANSFORMADOR

I1 (A)	I2(A)	R1(Ω)	R2(Ω)	К	P11 (W)	PNL(W)
1,2547	41,6667	37,07	0,0435	1	142	52
V1 (V)	V2(V)	Potencia (kVA)				
7970	240	10				

	-	Pérdidas	nominales:	-	
Óhmicas (Pɒc)	Adicionales (Ptsl)	Por corrientes parásitas (PEC-R)	Otras pérdidas adicionales (PosL-R)	Por corrientes parásitas en el devanado primario (PECI-R)	Por corrientes parásitas en el devanado secundario (PECI-R)
133,7928	8,2072	2,7084	5,4989	1,0834	1,6250

Corriente fundamental							
hora	lfundA (A)	lfundB (A)					
00	27,1500	25,3500					
01	29,8670	26,0670					
02	28,9670	26,4000					
03	33,0830	25,1830					
04	33,9500	23,9000					
05	31,1500	27,0330					
06	45,1830	29,4330					
07	38,5330	32,4830					

08	52,4670	45,7170
09	54,9830	42,1830
10	40,7330	30,5170
11	39,5670	31,4000
12	46,0500	38,1670
13	47,2670	41,1830
14	65,5170	55,0330
15	65,3330	53,9830
16	48,1500	31,0000
17	50,7670	34,6000
18	67,1170	39,9670
19	70,4170	42,1330
20	58,7830	45,7330
21	54,1000	40,8670
22	43,5330	38,7170
23	37,067	31,117

Corriente Efectiva			
Hora	lefecA (A)	lefecB (A)	
00	27,3109	25,5566	
01	30,0348	26,1917	
02	29,0676	26,5066	
03	33,1368	25,2657	
04	34,0227	23,9683	
05	31,2979	27,1518	
06	45,4483	29,7547	
07	39,0532	33,0607	
08	53,1401	46,0383	
09	55,4549	42,5653	
10	41,5149	31,2834	
11	40,2594	31,9606	
12	46,8099	38,6773	
13	48,3390	42,0206	
14	66,2282	55,3031	
15	66,0505	54,0977	
16	49,2332	31,3464	
17	51,9069	35,0013	
18	68,1816	40,7371	
19	71,8621	43,1573	
20	59,6347	46,5884	
21	54,8818	41,7986	
22	44,1028	39,3481	
23	37,3738	31,5021	

	Factores de pérdidas armónicas						
hora	Fhla	Fhla-str	lsecA(p.u.)	Fhlb	F hlb-str	IsecB(p.u.)	
00	1,2770	1,0277	0,6555	1,3442	1,0363	0,6134	
01	1,2698	1,0262	0,7208	1,2108	1,0219	0,6286	
02	1,1758	1,0167	0,6976	1,1518	1,0171	0,6362	
03	1,0898	1,0082	0,7953	1,1377	1,0147	0,6064	
04	1,0984	1,0097	0,8165	1,1719	1,0154	0,5752	
05	1,1588	1,0182	0,7512	1,1912	1,0195	0,6516	
06	1,1727	1,0215	1,0908	1,4173	1,0447	0,7141	
07	1,3901	1,0489	0,9373	1,6478	1,0710	0,7935	
08	1,3248	1,0440	1,2754	1,2052	1,0255	1,1049	
09	1,2117	1,0292	1,3309	1,2716	1,0338	1,0216	
10	1,4872	1,0649	0,9964	1,6970	1,0875	0,7508	
11	1,4664	1,0606	0,9662	1,4883	1,0622	0,7671	
12	1,4236	1,0560	1,1234	1,3635	1,0467	0,9283	
13	1,5973	1,0779	1,1601	1,5887	1,0734	1,0085	
14	1,2605	1,0360	1,5895	1,1366	1,0175	1,3273	
15	1,2571	1,0360	1,5852	1,0512	1,0071	1,2983	
16	1,5709	1,0758	1,1816	1,3013	1,0393	0,7523	
17	1,5568	1,0748	1,2458	1,3026	1,0397	0,8400	
18	1,3917	1,0524	1,6364	1,4547	1,0620	0,9777	
19	1,4984	1,0672	1,7247	1,5381	1,0758	1,0358	
20	1,3511	1,0473	1,4312	1,4706	1,0619	1,1181	
21	1,3819	1,0489	1,3172	1,5915	1,0758	1,0032	
22	1,3870	1,0471	1,0585	1,4424	1,0556	0,9444	
23	1,2650	1,0313	0,8970	1,3861	1,0461	0,7561	

	Pérdidas c	Pérdidas totales con armónicos		
hora	PLLHA (p.u.)	Ршнв (р.и.)	Рштн	Рн
00	0,4589	0,4025	57,6213	109,6213
01	0,5549	0,4214	65,3104	117,3104
02	0,5186	0,4310	63,5278	115,5278
03	0,6726	0,3915	71,1865	123,1865
04	0,7092	0,3526	71,0305	123,0305
05	0,6011	0,4527	70,4918	122,4918
06	1,2679	0,5465	121,3788	173,3788
07	0,9411	0,6783	108,3301	160,3301
08	1,7400	1,3021	203,5018	255,5018
09	1,8897	1,1148	200,9913	252,9913

10	1,0661	0,6083	112,0062	164,0062
11	1,0020	0,6318	109,2944	161,2944
12	1,3533	0,9225	152,2412	204,2412
13	1,4491	1,0946	170,1647	222,1647
14	2,6985	1,8759	306,0068	358,0068
15	2,6838	1,7913	299,3738	351,3738
16	1,5023	0,6051	140,9749	192,9749
17	1,6694	0,7544	162,1440	214,1440
18	2,8689	1,0257	260,5393	312,5393
19	3,1953	1,1537	290,9271	342,9271
20	2,1926	1,3420	236,4524	288,4524
21	1,8582	1,0833	196,7762	248,7762
22	1,2000	0,9565	144,2661	196,2661
23	0,8593	0,6122	98,4375	150,4375

	Para co suponien co	Pérdidas totales sin armónicos		
hora	Plla	Ршв	Р ШТ (W)	P (W)
00	0,4560	0,3993	57,2146	109,2146
01	0,5515	0,4194	64,9466	116,9466
02	0,5165	0,4295	63,2874	115,2874
03	0,6713	0,3902	71,0119	123,0119
04	0,7076	0,3512	70,8329	122,8329
05	0,5988	0,4507	70,2095	122,2095
06	1,2627	0,5412	120,6794	172,6794
07	0,9324	0,6682	107,0726	159,0726
08	1,7263	1,2957	202,1651	254,1651
09	1,8800	1,1076	199,8606	251,8606
10	1,0536	0,5983	110,5065	162,5065
11	0,9909	0,6245	108,0594	160,0594
12	1,3395	0,9145	150,7878	202,7878
13	1,4285	1,0795	167,7716	219,7716
14	2,6814	1,8697	304,4546	356,4546
15	2,6670	1,7891	298,1002	350,1002
16	1,4818	0,6007	139,3126	191,3126
17	1,6471	0,7489	160,2885	212,2885
18	2,8419	1,0145	257,9818	309,9818
19	3,1570	1,1386	287,3642	339,3642
20	2,1741	1,3269	234,2024	286,2024
21	1,8413	1,0681	194,6296	246,6296
22	1,1891	0,9465	142,8634	194,8634
23	0,8539	0,6067	97,7082	149,7082

hora	ImaxA (A)	ImaxB (A)	ΔΡιι (W)	Potencia con presencia de armónicos (W)
00	39,5210	39,0313	0,4067	9,4263
01	39,6501	39,9297	0,3638	9,5496
02	40,2524	40,3592	0,2404	9,6734
03	40,9439	40,4568	0,1746	9,7681
04	40,8849	40,1935	0,1976	9,7294
05	40,3881	40,0935	0,2823	9,6578
06	40,5526	38,7668	0,6993	9,5183
07	39,2266	37,8520	1,2575	9,2494
08	39,9822	40,3852	1,3367	9,6441
09	40,5293	39,9453	1,1307	9,6570
10	38,8682	37,4631	1,4997	9,1598
11	38,9111	38,4284	1,2349	9,2807
12	39,3637	39,3355	1,4534	9,4439
13	38,7888	38,5166	2,3931	9,2766
14	40,5402	40,8987	1,5522	9,7727
15	40,5470	41,3504	1,2735	9,8277
16	38,9143	39,4192	1,6623	9,4000
17	39,0805	39,5294	1,8554	9,4332
18	40,1643	38,9646	2,5576	9,4955
19	39,9755	38,7123	3,5629	9,4425
20	40,0661	39,1669	2,2500	9,5080
21	39,8242	38,4809	2,1465	9,3966
22	39,4443	38,9919	1,4027	9,4124
23	39,8451	38,9654	0,7294	9,4573

En la gráfica 1, se muestra la corriente fundamental y efectiva de la fase A del transformador monofásico de 10 kVA durante las 24 horas del día.

Gráfica 1. Corrientes fundamentales del transformador de 10 kVA de las 24 horas del día.

En la gráfica 2, se observa la corriente fundamental y la corriente efectiva de la fase B del transformador monofásico de 10 kVA durante las 24 horas del día.

Gráfica 2. Corriente fundamental y efectiva de la fase A del transformador monofásico de 10 kVA. En la gráfica 3, se observa los factores de pérdidas armónicas por corrientes de Eddy para la fase A y B del transformador de 10 kVA durante las 24 horas del día.

Gráfica 3. Factores de pérdidas armónicas por corrientes de Eddy para la fase A y B del transformador de 10 kVA de las 24 horas del día.

En la gráfica 4, se visualiza los factores de pérdidas armónicas por corrientes parásitas en la fase A y B en el transformador de 10 kVA durante las 24 horas del día.

Gráfica 4. Factores de pérdidas armónicas por corrientes parásitas en la fase A y B del transformador de 10 kVA de las 24 horas del día.

En la gráfica 5, se muestra las pérdidas totales sin armónicos de corriente (P) en el transformador de 10 kVA durante las 24 horas del día.

Gráfica 5. Pérdidas totales sin armónicos en el transformador de 10 kVA durante las 24 horas del día.

En la gráfica 6, se visualiza las pérdidas totales con armónicos de corriente (P_H) en el transformador de 10 kVA durante las 24 horas del día.

Gráfica 6. Pérdidas totales con armónicos de corriente en el transformador de 10 kVA durante las 24 horas del día.

Anexo D. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador de distribución monofásico de 15 kVA.

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO

ELECTROMECÁNICA

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

REPORTE

PARÁMETROS DEL TRANSFORMADOR

I1 (A)	I2(A)	R1(Ω)	R2(Ω)	К	PLL (W)	PNL(W)
1,8821	62,5000	23,5	0,0253	1	192	68
V1 (V)	V2 (V)	Potencia (kVA)				
7970	240	15				

Pérdidas nominales:						
Óhmicas (Pɒc)	Adicionales (Pīsl)	Por corrientes parásitas (PEC-R)	Otras pérdidas adicionales (Posl-R)	Por corrientes parásitas en el devanado primario (PECI-R)	Por corrientes parásitas en el devanado secundario (PECI-R)	
182,0293	9,9707	3,2903	6,6804	1,3161	1,9742	

Corriente fundamental				
hora	lfundA (A)	lfundB (A)		
00	23,2500	8,7830		
01	20,8830	10,0670		
02	22,8170	11,1000		
03	21,7500	8,5670		
04	18,8670	9,0170		
05	27,2170	10,5000		
06	26,6830	10,7000		
07	19,7670	9,7830		

08	20,4170	8,3170
09	20,2670	8,8670
10	21,4330	10,2330
11	23,1500	9,5000
12	26,1670	11,2830
13	27,5830	10,8670
14	29,7830	11,8330
15	30,4000	12,8500
16	29,5000	12,0670
17	33,8670	12,5830
18	42,2670	18,0830
19	39,6670	18,4500
20	37,4330	16,0830
21	30,6330	14,7500
22	25,9000	11,5330
23	22	9,217

Corriente Efectiva			
Hora	lefecA (A)	lefecB (A)	
00	23,4081	8,8661	
01	21,0676	10,1565	
02	22,9876	11,1408	
03	21,9266	8,6185	
04	19,0338	9,0997	
05	27,3764	10,6426	
06	26,9240	10,7922	
07	20,0208	9,9111	
08	20,7922	8,4209	
09	20,5052	9,0197	
10	21,6668	10,5035	
11	23,5197	9,7909	
12	26,7311	11,6306	
13	28,2314	11,1802	
14	30,7448	12,0918	
15	31,3385	13,0871	
16	30,6460	12,1967	
17	34,7384	12,8064	
18	43,3962	18,8645	
19	41,1467	19,2102	
20	38,4037	16,7036	
21	31,0588	15,2780	
22	26,3168	11,9597	
23	22,2351	9,3408	

Factores de pérdidas armónicas						
hora	FHLA	Fhla-str	lsecA(p.u.)	Fhlb	Fhlb-str	IsecB(p.u.)
00	1,2307	1,0269	0,3745	1,3442	1,0380	0,1419
01	1,3112	1,0355	0,3371	1,3807	1,0396	0,1625
02	1,2598	1,0299	0,3678	1,1393	1,0151	0,1783
03	1,2833	1,0327	0,3508	1,2221	1,0244	0,1379
04	1,2907	1,0345	0,3045	1,3034	1,0361	0,1456
05	1,1606	1,0206	0,4380	1,2908	1,0413	0,1703
06	1,2645	1,0321	0,4308	1,2342	1,0302	0,1727
07	1,4250	1,0493	0,3203	1,4497	1,0518	0,1586
08	1,5754	1,0693	0,3327	1,4370	1,0501	0,1347
09	1,3515	1,0435	0,3281	1,6551	1,0712	0,1443
10	1,3724	1,0430	0,3467	1,9932	1,1084	0,1681
11	1,5016	1,0602	0,3763	2,1535	1,1255	0,1567
12	1,6736	1,0813	0,4277	2,0817	1,1215	0,1861
13	1,7735	1,0912	0,4517	1,9917	1,1123	0,1789
14	2,0010	1,1211	0,4919	1,7664	1,0868	0,1935
15	1,9497	1,1153	0,5014	1,6442	1,0730	0,2094
16	2,1211	1,1396	0,4903	1,3879	1,0428	0,1951
17	1,7716	1,0943	0,5558	1,5558	1,0652	0,2049
18	1,6583	1,0876	0,6943	2,0812	1,1421	0,3018
19	1,8771	1,1188	0,6583	2,0607	1,1367	0,3074
20	1,6635	1,0867	0,6145	2,0287	1,1296	0,2673
21	1,4171	1,0498	0,4969	2,0937	1,1270	0,2444
22	1,4936	1,0582	0,4211	2,1667	1,1327	0,1914
23	1,3450	1,0401	0,3558	1,4573	1,0511	0,1495

	Pérdidas c	Pérdidas totales con armónicos		
hora	PLLHA (p.u.)	Pllhв (p.u.)	Рістн	Рн
00	0,1487	0,0214	15,4778	83,4778
01	0,1206	0,0281	13,5347	81,5347
02	0,1435	0,0336	16,1172	84,1172
03	0,1306	0,0202	13,7203	81,7203
04	0,0984	0,0225	11,0067	79,0067
05	0,2031	0,0308	21,2842	89,2842
06	0,1968	0,0316	20,7927	88,7927
07	0,1092	0,0268	12,3765	80,3765
08	0,1182	0,0193	12,5137	80,5137
09	0,1144	0,0223	12,4379	80,4379

10	0,1278	0,0304	14,3958	82,3958
11	0,1510	0,0265	16,1529	84,1529
12	0,1957	0,0374	21,2133	89,2133
13	0,2187	0,0345	23,0453	91,0453
14	0,2607	0,0401	27,3780	95,3780
15	0,2706	0,0469	28,8921	96,8921
16	0,2597	0,0405	27,3224	95,3224
17	0,3312	0,0448	34,2247	102,2247
18	0,5158	0,0983	55,8967	123,8967
19	0,4659	0,1019	51,6830	119,6830
20	0,4040	0,0770	43,7759	111,7759
21	0,2628	0,0645	29,7871	97,7871
22	0,1890	0,0396	20,8009	88,8009
23	0,1345	0,0238	14,4040	82,4040

	Para co suponien co	Pérdidas totales sin armónicos		
hora	Plla	Pllb	Ршт (W)	P (W)
00	0,1480	0,0212	15,3981	83,3981
01	0,1198	0,0279	13,4430	81,4430
02	0,1427	0,0335	16,0370	84,0370
03	0,1298	0,0201	13,6410	81,6410
04	0,0978	0,0224	10,9385	78,9385
05	0,2024	0,0306	21,2025	89,2025
06	0,1957	0,0315	20,6776	88,6776
07	0,1082	0,0265	12,2649	80,2649
08	0,1167	0,0191	12,3673	80,3673
09	0,1135	0,0220	12,3327	80,3327
10	0,1268	0,0298	14,2486	82,2486
11	0,1494	0,0259	15,9507	83,9507
12	0,1929	0,0365	20,8852	88,8852
13	0,2152	0,0338	22,6593	90,6593
14	0,2552	0,0395	26,8236	94,8236
15	0,2652	0,0462	28,3453	96,3453
16	0,2536	0,0402	26,7371	94,7371
17	0,3259	0,0443	33,6878	101,6878
18	0,5085	0,0961	55,0282	123,0282
19	0,4572	0,0996	50,6776	118,6776
20	0,3982	0,0753	43,1026	111,1026
21	0,2605	0,0630	29,4437	97,4437
22	0,1870	0,0386	20,5359	88,5359
23	0,1335	0,0236	14,2946	82,2946

hora	ImaxA (A)	ImaxB (A)	ΔΡιι (W)	Potencia con presencia de armónicos (W)
00	59,2988	57,7953	0,0798	14,0513
01	58,3464	57,4572	0,0917	13,8964
02	58,9561	60,3542	0,0802	14,3172
03	58,6669	59,2325	0,0793	14,1479
04	58,5120	58,2161	0,0682	14,0074
05	60,1971	58,2764	0,0818	14,2168
06	58,9635	59,0303	0,1152	14,1593
07	57,1391	56,6829	0,1116	13,6586
08	55,7707	56,7911	0,1465	13,5074
09	57,8534	54,8875	0,1053	13,5289
10	57,7085	52,5189	0,1473	13,2273
11	56,5103	51,5520	0,2022	12,9675
12	55,2394	51,9678	0,3281	12,8649
13	54,6360	52,4873	0,3860	12,8548
14	53,3527	54,0489	0,5544	12,8882
15	53,6821	55,0220	0,5468	13,0445
16	52,6413	57,3758	0,5853	13,2020
17	54,9880	55,7294	0,5369	13,2861
18	56,1667	51,9945	0,8685	12,9793
19	54,6423	52,1727	1,0053	12,8178
20	55,8560	52,2842	0,6732	12,9768
21	57,5506	51,9792	0,3434	13,1436
22	56,6977	51,4665	0,2650	12,9797
23	58,0021	56,6240	0,1094	13,7551

En la gráfica 7, se visualiza la corriente fundamental y efectiva de la fase A del transformador monofásico de 15 kVA durante las 24 horas del día.

Gráfica 7. Corriente fundamental y efectiva de la fase A del transformador monofásico de 15 kVA.

En la gráfica 8, se observa la corriente fundamental y la corriente efectiva de la fase B del transformador monofásico de 15 kVA durante las 24 horas del día.

Gráfica 8. Corriente fundamental y efectiva de la fase B del transformador monofásico de 15 kVA.

En la gráfica 9, se visualiza los factores de pérdidas armónicas por corriente de Eddy para la fase A y B del transformador de 15 kVA durante las 24 horas del día.

Gráfica 9. Factores de pérdidas armónicas por corrientes de Eddy para la fase A y B del transformador de 15 kVA para las 24 horas del día.

En la gráfica 10, se observa los factores de pérdidas armónicas por corrientes parásitas en la fase A y B en el transformador de 15 kVA durante las 24 horas del día.

Gráfica 10. Factores de pérdidas armónicas por corrientes parásitas en la fase A y B del transformador de 15 kVA de las 24 horas del día.

En la gráfica 11, se muestra las pérdidas totales sin armónicos de corriente (P) en el transformador monofásico de 15 kVA durante las 24 horas del día.

Gráfica 11. Pérdidas totales sin armónicos en el transformador de 15 kVA durante las 24 horas del día.

En la gráfica 12, se muestra las pérdidas totales con armónicos de corriente (P_H) en el transformador de 15 kVA durante las 24 horas del día.

Gráfica 12. Pérdidas totales con armónicos de corriente en el transformador de 15 kVA durante las 24 horas del día.

Anexo E. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador monofásico de distribución 25 kVA.

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO

ELECTROMECÁNICA

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

REPORTE

PARÁMETROS DEL TRANSFORMADOR

l1 (A)	I2(A)	R1(Ω)	R2(Ω)	К	P11 (W)	PNL(W)
3,2808	104,1667	11	0,0120	1	360	90
V1 (V)	V2(V)	Potencia (kVA)				
7970	240	25				

Pérdidas nominales:						
Óhmicas (P⊵c)	Adicionales (Ptsl)	Por corrientes parásitas (PEC-R)	Otras pérdidas adicionales (PosL-R)	Por corrientes parásitas en el devanado primario (PECI-R)	Por corrientes parásitas en el devanado secundario (PECI-R)	
248,6114	111,3886	36,7583	74,6304	14,7033	22,0550	

Corriente fundamental					
hora	lfundA (A)	lfundB (A)			
00	29,4670	36,0500			
01	29,1170	30,7330			
02	25,1330	27,7670			
03	28,9170	27,9830			
04	26,2170	26,7670			
05	26,1330	30,7500			
06	27,3830	28,3830			
07	26,9000	31,0830			

08	28,3170	48,8500
09	36,8170	41,4670
10	36,2330	35,5170
11	32,1000	31,3500
12	41,0500	33,9170
13	29,9830	29,6330
14	30,7830	34,4670
15	30,6500	36,0000
16	36,8500	43,0000
17	39,4830	44,3500
18	49,1830	62,8000
19	53,4330	76,3330
20	47,4670	76,3330
21	40,0170	70,9170
22	31,0670	63,6830
23	26,05	55,7

Corriente Efectiva					
Hora	lefecA (A)	lefecB (A)			
00	29,7102	36,7441			
01	29,3031	31,2677			
02	25,3765	28,2793			
03	29,0797	28,5376			
04	26,3995	27,2503			
05	26,2802	31,0286			
06	27,6095	28,9182			
07	27,2733	31,7468			
08	28,9692	49,3492			
09	37,2647	42,3482			
10	36,6121	36,4686			
11	32,5358	32,1620			
12	41,4452	34,8641			
13	30,3646	30,2667			
14	31,2608	36,0846			
15	31,2645	37,7106			
16	37,4321	45,5853			
17	40,0351	46,3744			
18	50,3354	64,7588			
19	54,9841	78,8037			
20	48,8080	78,8037			
21	41,0298	73,1942			
22	31,6605	65,7463			
23	26,5097	57,2083			

		Factores	de pérdidas arm	ónicas		
hora	Fhla	Fhla-str	lsecA(p.u.)	Fhlb	F hlb-str	IsecB(p.u.)
00	1,6765	1,0548	0,2852	2,1178	1,1019	0,3527
01	1,5550	1,0443	0,2813	2,0994	1,0977	0,3002
02	1,8147	1,0655	0,2436	2,2218	1,1067	0,2715
03	1,4943	1,0393	0,2792	2,2696	1,1122	0,2740
04	1,6176	1,0486	0,2534	2,2428	1,1070	0,2616
05	1,4925	1,0388	0,2523	1,6415	1,0545	0,2979
06	1,4123	1,0381	0,2651	1,9224	1,0858	0,2776
07	1,5947	1,0589	0,2618	1,9518	1,0905	0,3048
08	1,9706	1,0977	0,2781	1,4386	1,0444	0,4738
09	1,4887	1,0512	0,3577	1,8990	1,0899	0,4065
10	1,4169	1,0438	0,3515	2,1832	1,1147	0,3501
11	1,5385	1,0565	0,3123	2,0970	1,1099	0,3088
12	1,3557	1,0390	0,3979	2,1249	1,1153	0,3347
13	1,4775	1,0515	0,2915	2,0675	1,0992	0,2906
14	1,5888	1,0628	0,3001	2,8171	1,1882	0,3464
15	1,7285	1,0799	0,3001	2,7186	1,1845	0,3620
16	1,5120	1,0591	0,3593	2,9817	1,2215	0,4376
17	1,4983	1,0550	0,3843	2,5401	1,1716	0,4452
18	1,7266	1,0864	0,4832	1,9132	1,1112	0,6217
19	1,8675	1,1048	0,5278	1,8245	1,1085	0,7565
20	1,8957	1,1054	0,4686	1,8245	1,1085	0,7565
21	1,9535	1,1036	0,3939	1,8605	1,1105	0,7027
22	2,0294	1,0974	0,3039	1,9591	1,1175	0,6312
23	2,2413	1,1065	0,2545	1,9250	1,1062	0,5492

	Pérdidas c	Pérdidas totales con armónicos		
hora	PLLHA (p.u.)	Ршнв (р.и.)	Рістн	Рн
00	0,1273	0,2045	41,2469	131,2469
01	0,1221	0,1478	33,5497	123,5497
02	0,0943	0,1224	26,9312	116,9312
03	0,1195	0,1253	30,4259	120,4259
04	0,0998	0,1139	26,5621	116,5621
05	0,0975	0,1384	29,3232	119,3232
06	0,1068	0,1241	28,7035	118,7035
07	0,1065	0,1501	31,8971	121,8971
08	0,1254	0,3425	58,1633	148,1633
09	0,1965	0,2658	57,4653	147,4653

10	0,1881	0,2031	48,6372	138,6372
11	0,1507	0,1567	38,2042	128,2042
12	0,2394	0,1847	52,7212	142,7212
13	0,1304	0,1381	33,3694	123,3694
14	0,1400	0,2128	43,8477	133,8477
15	0,1423	0,2303	46,3224	136,3224
16	0,1991	0,3462	67,7735	157,7735
17	0,2272	0,3423	70,7997	160,7997
18	0,3693	0,6247	123,5611	213,5611
19	0,4480	0,9171	169,6900	259,6900
20	0,3539	0,9171	158,0022	248,0022
21	0,2514	0,7942	129,9625	219,9625
22	0,1505	0,6474	99,1866	189,1866
23	0,1077	0,4876	74,0074	164,0074

	Para co suponien co	Pérdidas totales sin armónicos		
hora	Plla	Pllb	Р ШТ (W)	P (W)
00	0,1178	0,1802	37,0399	127,0399
01	0,1146	0,1305	30,4626	120,4626
02	0,0859	0,1067	23,9490	113,9490
03	0,1129	0,1087	27,5378	117,5378
04	0,0930	0,0991	23,8798	113,8798
05	0,0922	0,1285	27,4283	117,4283
06	0,1017	0,1116	26,5180	116,5180
07	0,0993	0,1345	29,0585	119,0585
08	0,1120	0,3250	54,3209	144,3209
09	0,1853	0,2393	52,7861	142,7861
10	0,1789	0,1775	44,2988	134,2988
11	0,1413	0,1380	34,7200	124,7200
12	0,2292	0,1622	48,6583	138,6583
13	0,1230	0,1223	30,4916	120,4916
14	0,1304	0,1738	37,8114	127,8114
15	0,1304	0,1898	39,8058	129,8058
16	0,1870	0,2773	57,7154	147,7154
17	0,2139	0,2870	62,2644	152,2644
18	0,3381	0,5597	111,5987	201,5987
19	0,4035	0,8287	153,1689	243,1689
20	0,3179	0,8287	142,5349	232,5349
21	0,2247	0,7150	116,7990	206,7990
22	0,1338	0,5769	88,3348	178,3348
23	0,0938	0,4368	65,9496	155,9496

hora	ImaxA (A)	ImaxB (A)	ΔΡιι (W)	Potencia con presencia de armónicos (W)
00	92,0672	87,6500	4,2071	21,5661
01	93,6298	87,5791	3,0871	21,7451
02	90,3389	86,4224	2,9822	21,2114
03	94,4766	86,0105	2,8881	21,6585
04	92,7351	86,2355	2,6823	21,4765
05	94,4427	92,4764	1,8949	22,4303
06	95,5411	89,0586	2,1855	22,1520
07	92,7508	88,8372	2,8386	21,7906
08	88,3922	95,6884	3,8424	22,0897
09	94,4916	89,8051	4,6792	22,1156
10	95,5671	86,9139	4,3384	21,8977
11	93,6140	87,3425	3,4842	21,7148
12	96,6593	87,1781	4,0629	22,0605
13	94,4133	87,7114	2,8778	21,8550
14	92,8434	82,0881	6,0363	20,9918
15	90,9875	82,6975	6,5166	20,8422
16	94,0236	81,6221	10,0581	21,0775
17	94,3780	84,4673	8,5353	21,4614
18	91,7594	90,6935	11,9624	21,8944
19	90,4819	92,3668	16,5211	21,9418
20	89,8586	92,3668	15,4673	21,8671
21	88,9971	91,6800	13,1635	21,6813
22	88,0897	90,3344	10,8518	21,4109
23	86,2232	90,1823	8,0578	21,1687

En la gráfica 13, se visualiza la corriente fundamental y efectiva de la fase A del transformador monofásico de 25 kVA durante las 24 horas del día.

Gráfica 13. Corriente fundamental y efectiva de la fase A del transformador monofásico de 25 kVA.

En la gráfica 14, se observa la corriente fundamental y la corriente efectiva de la fase B del transformador monofásico de 25 kVA durante las 24 horas del día.

Gráfica 14. Corriente fundamental y efectiva de la fase B del transformador monofásico de 25 kVA.

En la gráfica 15, se visualiza los factores de pérdidas armónicas por corriente de Eddy para la fase A y B del transformador de 25 kVA durante las 24 horas del día.

Gráfica 15. Factores de pérdidas armónicas por corrientes de Eddy para la fase A y B del transformador de 25 kVA para las 24 horas del día.

En la gráfica 16, se observa los factores de pérdidas armónicas por corrientes parásitas en la fase A y B en el transformador de 25 kVA durante las 24 horas del día.

Gráfica 16. Factores de pérdidas armónicas por corrientes parásitas en la fase A y B del transformador de 25 kVA de las 24 horas del día.

En la gráfica 17, se muestra las pérdidas totales sin armónicos de corriente (P) en el transformador monofásico de 25 kVA durante las 24 horas del día.

Gráfica 17. Pérdidas totales sin armónicos en el transformador de 25 kVA durante las 24 horas del día. En la gráfica 18, se muestra las pérdidas totales con armónicos de corriente (P_H) en el transformador de 15 kVA durante las 24 horas del día.

Gráfica 18. Pérdidas totales con armónicos de corriente en el transformador de 25 kVA durante las 24 horas del día.

Anexo F. Reporte de las pérdidas adicionales causadas por la circulación de armónicos de corriente en el transformador monofásico de distribución de 37.5 kVA.

UNIVERSIDAD NACIONAL DE LOJA

FACULTAD DE ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

"CÁLCULO DE PÉRDIDAS ADICIONALES CAUSADAS POR LA CIRCULACIÓN DE ARMÓNICAS DE CORRIENTE EN LOS TRANSFORMADORES DE DISTRIBUCIÓN"

REPORTE

PARÁMETROS DEL TRANSFORMADOR

l1 (A)	I2(A)	R1(Ω)	R2(Ω)	К	P11 (W)	PNL(W)
4,7051	156,2500	7,38	0,0077	1	403	130
V1 (V)	V2(V)	Potencia (kVA)				
7970	240	37.5				

Pérdidas nominales:						
Óhmicas (Pɒc)	Adicionales (Ptsl)	Por corrientes parásitas (PEC-R)	Otras pérdidas adicionales (PosL-R)	Por corrientes parásitas en el devanado primario (PECI-R)	Por corrientes parásitas en el devanado secundario (PECI-R)	
352,3461	50,6539	16,7158	33,9381	6,6863	10,0295	

Corriente fundamental					
hora	lfundA (A)	lfundB (A)			
00	93,3670	93,4000			
01	105,5000	102,1670			
02	98,8330	82,7330			
03	95,6000	88,8500			
04	135,1000	115,9500			
05	132,5670	143,2830			
06	136,8500	126,0830			
07	105,0000	117,2000			

08	101,5670	115,3830
09	90,8170	94,5830
10	80,2170	80,1170
11	80,8330	76,2830
12	75,6670	78,7500
13	73,6000	76,1830
14	69,7000	74,1330
15	83,8170	80,8670
16	87,5330	85,5670
17	73,9500	75,4670
18	70,4170	79,8670
19	73,7500	77,9170
20	81,4830	80,7670
21	73,4000	81,4830
22	88,1170	88,8500
23	88,1	96,233

Corriente Efectiva					
Hora	lefecA (A)	lefecB (A)			
00	93,8790	93,7623			
01	105,9056	102,4406			
02	99,2953	83,0359			
03	96,1872	89,2002			
04	135,9173	116,8145			
05	133,7812	144,4569			
06	138,1247	127,1614			
07	106,0825	118,1909			
08	102,3366	115,9254			
09	91,2858	94,8723			
10	80,5209	80,3342			
11	81,1018	76,4296			
12	75,9352	78,8975			
13	73,9030	76,3165			
14	69,9643	74,2291			
15	84,1612	81,0197			
16	87,8904	85,8357			
17	74,3200	75,7855			
18	70,7747	80,2088			
19	74,1443	78,0838			
20	81,9173	81,0675			
21	73,8301	81,8226			
22	88,4273	89,1693			
23	88,5820	96,6965			

Factores de pérdidas armónicas						
hora	Fhla	F HLA-STR	lsecA (p.u.)	Fhlb	F hlb-str	IsecB(p.u.)
00	1,2050	1,0208	0,6008	1,1495	1,0151	0,6001
01	1,1726	1,0162	0,6778	1,0938	1,0099	0,6556
02	1,1891	1,0185	0,6355	1,1210	1,0131	0,5314
03	1,2029	1,0223	0,6156	1,1213	1,0136	0,5709
04	1,1438	1,0195	0,8699	1,1638	1,0235	0,7476
05	1,2142	1,0292	0,8562	1,1641	1,0248	0,9245
06	1,2037	1,0290	0,8840	1,1753	1,0263	0,8138
07	1,2405	1,0332	0,6789	1,1811	1,0264	0,7564
08	1,1857	1,0251	0,6550	1,1007	1,0148	0,7419
09	1,1346	1,0179	0,5842	1,0761	1,0104	0,6072
10	1,1065	1,0136	0,5153	1,0694	1,0093	0,5141
11	1,0948	1,0121	0,5191	1,0572	1,0072	0,4891
12	1,1104	1,0136	0,4860	1,0571	1,0071	0,5049
13	1,1289	1,0158	0,4730	1,0560	1,0067	0,4884
14	1,1172	1,0144	0,4478	1,0401	1,0048	0,4751
15	1,1037	1,0139	0,5386	1,0436	1,0060	0,5185
16	1,1185	1,0142	0,5625	1,0673	1,0097	0,5493
17	1,1446	1,0170	0,4756	1,1114	1,0139	0,4850
18	1,1704	1,0184	0,4530	1,1263	1,0147	0,5133
19	1,1712	1,0189	0,4745	1,0759	1,0080	0,4997
20	1,1754	1,0190	0,5243	1,1193	1,0132	0,5188
21	1,2115	1,0218	0,4725	1,1413	1,0152	0,5237
22	1,1485	1,0141	0,5659	1,1208	1,0130	0,5707
23	1,2115	1,0211	0,5669	1,1393	1,0165	0,6189

	Pérdidas c	Pérdidas totales con armónicos		
hora	Pllha(p.u.)	Рігнв(р.и.)	Рштн	Рн
00	0,4171	0,4149	146,5869	276,5869
01	0,5299	0,4940	180,3805	310,3805
02	0,4662	0,3250	139,3958	269,3958
03	0,4379	0,3751	143,2225	273,2225
04	0,8720	0,6449	267,2424	397,2424
05	0,8480	0,9863	323,1550	453,1550
06	0,9035	0,7647	293,9016	423,9016
07	0,5339	0,6608	210,4813	340,4813
08	0,4954	0,6330	198,8022	328,8022
09	0,3932	0,4234	143,8508	273,8508

10	0,3054	0,3034	107,2694	237,2694
11	0,3097	0,2745	102,9120	232,9120
12	0,2717	0,2925	99,3918	229,3918
13	0,2576	0,2736	93,5872	223,5872
14	0,2307	0,2587	86,2159	216,2159
15	0,3336	0,3082	113,0826	243,0826
16	0,3641	0,3464	125,1742	255,1742
17	0,2607	0,2706	93,6040	223,6040
18	0,2367	0,3033	95,1403	225,1403
19	0,2598	0,2867	96,2807	226,2807
20	0,3172	0,3098	110,4460	240,4460
21	0,2581	0,3159	101,1169	231,1169
22	0,3690	0,3748	131,0364	261,0364
23	0,3715	0,4412	143,1707	273,1707

	Para co suponien co	Pérdidas totales sin armónicos		
hora	Plla	Ршв	Р ШТ (W)	P (W)
00	0,4129	0,4119	145,2989	275,2989
01	0,5255	0,4916	179,1827	309,1827
02	0,4619	0,3230	138,2824	268,2824
03	0,4334	0,3728	142,0306	272,0306
04	0,8655	0,6393	265,0935	395,0935
05	0,8385	0,9776	319,9464	449,9464
06	0,8938	0,7575	290,9209	420,9209
07	0,5272	0,6544	208,1730	338,1730
08	0,4906	0,6296	197,3520	327,3520
09	0,3904	0,4217	143,0639	273,0639
10	0,3037	0,3023	106,7765	236,7765
11	0,3081	0,2737	102,4993	232,4993
12	0,2701	0,2916	98,9668	228,9668
13	0,2559	0,2729	93,1471	223,1471
14	0,2293	0,2581	85,8767	215,8767
15	0,3318	0,3075	112,6372	242,6372
16	0,3619	0,3452	124,5650	254,5650
17	0,2588	0,2691	92,9908	222,9908
18	0,2347	0,3014	94,4400	224,4400
19	0,2575	0,2856	95,6942	225,6942
20	0,3144	0,3079	109,6254	239,6254
21	0,2554	0,3136	100,2448	230,2448
22	0,3663	0,3725	130,1613	260,1613
23	0,3676	0,4380	141,9344	271,9344

hora	ImaxA (A)	ImaxB (A)	ΔΡιι (W)	Potencia con presencia de armónicos (W)
00	149,8126	151,3782	1,2880	36,1429
01	150,9804	153,1466	1,1978	36,4952
02	150,3817	152,0569	1,1133	36,2926
03	149,8639	152,1096	1,1920	36,2368
04	152,0875	151,1688	2,1489	36,3908
05	150,2813	151,6618	3,2085	36,2332
06	150,6026	151,0353	2,9807	36,1965
07	148,9030	150,7140	2,3083	35,9540
08	150,3128	152,9656	1,4502	36,3934
09	151,6382	153,5549	0,7869	36,6232
10	152,4207	153,6706	0,4929	36,7310
11	152,8179	154,0971	0,4127	36,8298
12	152,2543	154,1197	0,4250	36,7649
13	151,6223	154,1511	0,4401	36,6928
14	151,9639	154,7224	0,3392	36,8024
15	152,5325	154,5966	0,4454	36,8555
16	152,1487	153,7646	0,6092	36,7096
17	151,1479	152,2131	0,6133	36,4033
18	150,3396	151,8164	0,7002	36,2587
19	150,3568	153,5020	0,5865	36,4631
20	150,3731	152,0748	0,8206	36,2938
21	149,2053	151,4069	0,8721	36,0735
22	151,3505	152,1444	0,8751	36,4194
23	149,5336	151,6425	1,2364	36,1411

En la gráfica 19, se visualiza la corriente fundamental y efectiva de la fase A del transformador monofásico de 37,5 kVA durante las 24 horas del día.

Gráfica 19. Corriente fundamental y efectiva de la fase A del transformador monofásico de 37,5 kVA.

En la gráfica 20, se observa la corriente fundamental y la corriente efectiva de la fase B del transformador monofásico de 37,5 kVA durante las 24 horas del día.

Gráfica 20. Corriente fundamental y efectiva de la fase B del transformador monofásico de 37,5 kVA.

En la gráfica 21, se visualiza los factores de pérdidas armónicas por corriente de Eddy para la fase A y B del transformador de 37,5 kVA durante las 24 horas del día.

Gráfica 21. Factores de pérdidas armónicas por corrientes de Eddy para la fase A y B del transformador monofásico de 37,5 kVA para las 24 horas del día.

En la gráfica 22, se observa los factores de pérdidas armónicas por corrientes parásitas en la fase A y B en el transformador de 37,5 kVA durante las 24 horas del día.

Gráfica 22. Factores de pérdidas armónicas por corrientes parásitas en la fase A y B del transformador de 37,5 kVA de las 24 horas del día.

En la gráfica 23, se muestra las pérdidas totales sin armónicos de corriente (P) en el transformador monofásico de 37,5 kVA durante las 24 horas del día.

Gráfica 23. Pérdidas totales sin armónicos en el transformador de 37,5 kVA durante las 24 horas del día. En la gráfica 24, se muestra las pérdidas totales con armónicos de corriente (P_H) en el transformador de 37,5 kVA durante las 24 horas del día.

Gráfica 24. Pérdidas totales con armónicos de corriente en el transformador de 37,5 kVA durante las 24 horas del día.